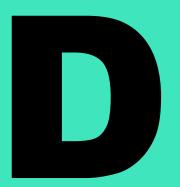
UNIVERSIDAD DE HUANUCO

FACULTAD DE INGENIERIA PROGRAMA ACADÉMICO DE INGENIERIA CIVIL

TRABAJO DE SUFICIENCIA PROFESIONAL

"Análisis de vulnerabilidades en la construcción del camino vecinal Marayzondor - Santo Domingo de Rondos - Huillaparac, distrito de San Rafael - Ambo – Huánuco"


PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

AUTOR: Suarez Damazo, Bequer Shumagin

ASESORA: Malpartida Valderrama, Yenerit Pamela

HUÁNUCO – PERÚ 2023

TIPO DEL TRABAJO DE INVESTIGACIÓN:

- Tesis ()
- Trabajo de Suficiencia Profesional(X)
- Trabajo de Investigación ()
- Trabajo Académico ()

LÍNEAS DE INVESTIGACIÓN: Gestión en la

construcción

AÑO DE LA LÍNEA DE INVESTIGACIÓN (2020) CAMPO DE CONOCIMIENTO OCDE:

Área: Ingeniería, Tecnología Sub área: Ingeniería civil Disciplina: Ingeniería civil DATOS DEL PROGRAMA:

Nombre del Grado/Título a recibir: Título

Profesional de Ingeniero Civil Código del Programa: P07 Tipo de Financiamiento:

- Propio (X)UDH ()
- Fondos Concursables ()

DATOS DEL AUTOR:

Documento Nacional de Identidad (DNI): 44779139

DATOS DEL ASESOR:

Documento Nacional de Identidad (DNI): 22516875 Grado/Título: Grado de magíster en medio ambiente

y desarrollo sostenible mención en gestión

ambiental

Código ORCID: 0000-0003-2705-4300

DATOS DE LOS JURADOS:

N°	APELLIDOS Y NOMBRES	GRADO	DNI	Código ORCID
1	Jacha Rojas, Johnny Prudencio	Maestro en ingeniería de sistemas e informática con mención en: gerencia de sistemas y tecnologías de información	40895876	0000-0001- 7920-1304
2	Trujillo Ariza, Yelen Lisseth	Maestro en medio ambiente y desarrollo sostenible, mención en gestión ambiental	70502371	0000-0002- 5650-3745
3	Davila Martel, Jerry Marlon	Ingeniero civil	43233596	0000-0003- 4088-603X

UNIVERSIDAD DE HUANUCO

Facultad de Ingeniería

PROGRAMA ACADÉMICO DE INGENIERÍA CIVIL

ACTA DE SUSTENTACIÓN DEL TRABAJO DE SUFICIENCIA PROFESIONAL PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO(A) CIVIL

En la ciudad de Huánuco, siendo las 16:00 horas del día jueves del mes de mayo del año 2023, en el Auditorio de la Facultad de Ingeniería, en cumplimiento de lo señalado en el Reglamento de Grados y Títulos de la Universidad de Huánuco, se reunieron el **Jurado Calificador** integrado por los docentes:

MG. JOHNNY PRUDENCIO JACHA ROJAS

(PRESIDENTE)

MG. YELEN LISSETH TRUJILLO ARIZA

(SECRETARIO)

ING. PERCY MELLO DÁVILA HERRERA

(VOCAL)

Nombrados mediante la RESOLUCIÓN Nº 1026-2022-D-FI-UDH, para evaluar Trabajo de Suficiencia Profesional intitulada: "ANÁLISIS DE VULNERABILIDADES EN LA CONSTRUCCIÓN DEL CAMINO VECINAL MARAYZONDOR – SANTO DOMINGO DE RONDOS - HUILLAPARAC, DISTRITO DE SAN RAFAEL - AMBO - HUÁNUCO", presentado por el (la) Bach. Bequer Shumagin SUAREZ DAMAZO, para optar el Título Profesional de Ingeniero (a) Civil.

Dicho acto de sustentación se desarrolló en dos etapas: exposición y absolución de preguntas: procediéndose luego a la evaluación por parte de los miembros del Jurado.

Habiendo absuelto las objeciones que le fueron formuladas por los miembros del Jurado y de conformidad con las respectivas disposiciones reglamentarias, procedieron a deliberar y calificar, declarándolo (a)...Aprobado por Oranimidad...con el calificativo cuantitativo de...A.2...y cualitativo de...Supricion. (Art. 47)

MG. JOHNNY PRUDENCIO JACHA ROJAS

ORCID: 0000-0001-7920-1304 PRESIDENTE MG. YELEN LISSETH TRUJILLO ARIZA ORCID: 0000-0002-5650-3745

SECRETARIO

ING. PERCY MELLO DÁVILA HERRERA ORCID: 0000-0003-3299-4655

VOCAL

UNIVERSIDAD DE HUÁNUCO

CONSTANCIA DE ORIGINALIDAD

Yo, Mg. YENERIT PAMELA MALPARTIDA VALDERRAMA, asesor(a) del P.A. DE INGENIERIA CIVIL y designado(a) mediante documento: RESOLUCIÓN N° 1418-2022-D-FI-UDH del 21 de Julio del 2022; BEQUER de trabajo de suficiencia profesional; "ANÁLISIS DE VULNERABILIDADES EN LA CONSTRUCCIÓN DEL CAMINO VECINAL MARAYZONDOR - SANTO DOMINGO DE RONDOS - HUILLAPARAC, DISTRITO DE SAN RAFAEL - AMBO – HUÁNUCO".

Puedo constar que la misma tiene un índice de similitud del **22%** verificable en el reporte final del análisis de originalidad mediante el Software Antiplagio Turnitin. Cabe recalcar que se tuvieron las siguientes consideraciones: se excluyó fuentes menores a 15 palabras y la bibliografía para disminuir el porcentaje.

Por lo que concluyo que cada una de las coincidencias detectadas no constituyen plagio y cumple con todas las normas de la Universidad de Huánuco.

Se expide la presente, a solicitud del interesado para los fines que estime conveniente.

Huánuco, 18 de mayo del 2023

MG. YENERIT PAMELA MALPARTIDA VALDERRAMA ASESOR DE TESIS

CIVIL - ESP AMBIENTAL

DNI. N° 22516875 CODIGO ORCID N° 0000-0003-2705-4300

SEGUNDA REVISION

INFORM	E DE ORIGINALIDAD	
	2% 21% 6% 8% TRABAJOS DEL ESTUDIANTE	
PUENTE	S PRIMARIAS	
1	hdl.handle.net Fuente de Internet	5%
2	distancia.udh.edu.pe Fuente de Internet	2%
3	repositorio.ucv.edu.pe	2%
4	repositorio.unheval.edu.pe Fuente de Internet	2%
5	vsip.info Fuente de Internet	1%
6	repositorio.udh.edu.pe	1%
7	Submitted to Universidad Cesar Vallejo Trabajo del estudiante	1%
8	repositorio.unsm.edu.pe	1%
9	www.lumensoft.pe	1%

MG. YENERIT PAMELA MALPARTIDA VALDERRAMA ASESOR DNI. N° 22516875 CODIGO ORCID N° 0000-0003-2705-4300

DEDICATORIA

Dedico este trabajo a la confianza profesional en Dios porque él ha estado conmigo en cada paso del camino, protegiéndome y dándome la fuerza para continuar y alcanzar mis metas.

Para mis padres y hermanos que se han preocupado por mi bienestar a lo largo de mi vida y educación, mi apoyo y motivación en mi formación académica siempre estarán presentes en mi corazón.

AGRADECIMIENTOS

A mi casa de estudios Universidad de Huánuco, por permitirme formarme como profesional en ingeniería civil, de igual manera a cada uno de sus docentes que integran la Facultad de Ingeniería Civil por transmitir sus conocimientos y valiosas experiencias.

También a la empresa "Consorcio supervisor viales" por incluirme como personal profesional en la supervisión de obra Construcción del camino vecinal Marayzondor - Santo Domingo de Rondos - Huillaparac, distrito de San Rafael - Ambo - Huánuco y a la Municipalidad Distrital de San Rafael.

ÍNDICE

DEDICATORIA	II
AGRADECIMIENTOS	
ÍNDICE	
ÍNDICE DE TABLAS	VII
ÍNDICE DE FIGURAS	IX
RESUMEN	X
ABSTRACT	XI
INTRODUCCIÓN	XII
CAPÍTULO I	13
PROBLEMA DE INVESTIGACIÓN	13
1.1. DESCRIPCIÓN DEL PROBLEMA	13
1.2. FORMULACIÓN DEL PROBLEMA	13
1.2.1. PROBLEMA GENERAL	13
1.3. OBJETIVOS	13
1.3.1. OBJETIVO GENERAL	13
1.3.2. OBJETIVOS ESPECÍFICOS	13
1.4. JUSTIFICACIÓN DE LA INVESTIGACIÓN	14
1.4.1. JUSTIFICACIÓN TEÓRICA	14
1.4.2. JUSTIFICACIÓN PRÁCTICA	14
1.4.3. JUSTIFICACIÓN METODOLÓGICA	15
1.5. LIMITACIONES DE LA INVESTIGACIÓN	15
1.6. VIABILIDAD DE LA INVESTIGACIÓN	15
CAPÍTULO II	17
MARCO TEÓRICO	17
2.1. ANTECEDENTES DE LA INVESTIGACIÓN	17
2.1.1. ANTECEDENTES NACIONALES	17
2.1.2. ANTECEDENTES LOCALES	20
2.2. BASES TEÓRICAS	23
2.2.1. CARRETERA	23
2.2.2. DERECHO DE VÍA	24
2.2.3. ALINEAMIENTO HORIZONTAL	25

2.2	2.4.	ALINEAMIENTO VERTICAL	. 28
2.2	2.5.	SECCIÓN TRANSVERSAL	. 29
2.3.	DE	FINICIONES CONCEPTUALES	. 31
2.4.	VAI	RIABLES	. 32
2.4	4.1.	VARIABLE INDEPENDIENTE	. 32
2.4	4.2.	VARIABLE DEPENDIENTE	. 32
2.5.	OP	ERACIONALIZACIÓN DE LAS VARIABLES	. 33
2.6.	MA	TERIALES Y MÉTODOS	. 33
2.6	5.1.	TIPO DE INVESTIGACIÓN	. 33
2.6	5.2.	ENFOQUE	. 33
2.6	5.3.	ALCANCE O NIVEL	. 34
2.6	6.4.	DISEÑO	. 34
2.7.	ΤÉ	CNICAS DE RECOLECCIÓN DE DATOS	. 34
2.7	7.1.	INSTRUMENTOS DE RECOLECCIÓN DE DATOS	. 34
CAPÍT	ULO	III	. 35
MARC	O DE	SCRIPTIVO REFERENCIAL	. 35
3.1.	DE:	SCRIPCIÓN DE LA INSTITUCIÓN	. 35
3.1	1.1.	NOMBRE O RAZÓN SOCIAL	. 35
3.1	1.2.	RUBRO	. 35
3.	1.3.	UBICACIÓN	. 35
3.1	1.4.	RESEÑA HISTÓRICA	. 35
3.2.	DE:	SCRIPCIÓN DEL ÁREA DE DESARROLLO PROFESIONAL	. 38
3.2	2.1.	MISIÓN	. 39
3.2	2.2.	VISIÓN	. 39
3.2	2.3.	ACTIVIDADES REALIZADAS	. 39
3.2	2.4.	TRABAJO EN CAMPO	. 39
3.2	2.5.	TRABAJOS EN GABINETE	. 40
3.2	2.6.	TRABAJO EN EJECUCIÓN DE OBRA	. 41
CAPÍT	ULO	IV	. 44
DESAF	RROL	LO DE EXPERIENCIA LABORAL	. 44
4.1.	IDE	NTIFICACIÓN DE LA SITUACIÓN PROBLEMÁTICA	. 44
4.1	1.1.	CARACTERÍSTICAS GENERALES	. 44
4.2.	AC	TIVIDADES PROFESIONALES REALIZADAS	. 47
4 1	2 1	DESCRIPCIÓN DE LA VÍA EXISTENTE	47

4.2.2.	ESTUDIO DE TRÁFICO	. 48
4.2.3.	ESTUDIO DE TOPOGRAFÌA, TRAZO Y DISEÑO VIAL	. 53
4.2.4.	ESTUDIO DE HIDROLOGÍA E HIDRÁULICA	. 73
4.2.5. l	ESTUDIO DE GEOLOGÍA Y GEOTECNIA	102
4.2.6. l	ESTRUCTURAS DE OBRAS Y ARTES	106
4.2.7.	SEÑALIZACIÒN Y SEGURIDAD VÌAL	109
4.2.8.	EVALUACIÒN SOCIOAMBIENTAL	118
4.2.9. l	PRESUPUESTO Y PLAZO DE EJECUCIÓN	122
CONCLUSIO	DNES	130
RECOMEND	DACIONES	131
REFERENCI	IAS BIBLIOGRÁFICAS	132
ANEXOS		134

ÍNDICE DE TABLAS

Tabla 1 Elementos de curvas simples	26
Tabla 2 Radios mínimos y peraltes máximas en curvas	27
Tabla 3 Ancho mínimo de calzada en tangente	30
Tabla 4 Velocidad directriz de la radio de la curva	31
Tabla 5 Operacionalización de variables	33
Tabla 6 Localización San Rafael	45
Tabla 7 Acceso al lugar del proyecto	46
Tabla 8 Coordenadas UTM de los tramos	46
Tabla 9 Coordenadas UTM de fuentes de agua	46
Tabla 10 Ubicación de las canteras para afirmado	47
Tabla 11 Ubicación de las canteras de agregados	47
Tabla 12 Estimación de tráfico generado por tipo de Proyecto	51
Tabla 13 Estación E-1	52
Tabla 14 Estación E-2	52
Tabla 15 Estación E-1	52
Tabla 16 Estación E-2	53
Tabla 17 Parámetros de medición utilizados	54
Tabla 18 Distancia de Visibilidad de parada (metros), en porcentaje 0%	60
Tabla 19 Distancia de visibilidad de parada con pendiente (Metro)	61
Tabla 20 Posibles curvas de radio amplio o el radio mínimo	62
Tabla 21 Ómnibus de tres ejes (B3-1) radios máximos, mínimos y ángulo	s 64
Tabla 22 Radios mínimos y peraltes máximos para diseño de carretera	65
Tabla 23 Valores de Índice K para el cálculo de la longitud de curva vertid	al
convexa en carreteras de tercera clase	66
Tabla 24 Valores de Índice K para el cálculo de la longitud de curva vertid	al
convexa en carreteras de tercera clase	67
Tabla 25 Pendientes máximas (%)	67
Tabla 26 Anchos mínimos de calzada en tangente	69
Tabla 27 Valores del bombeo de la calzada	69
Tabla 28 Taludes de corte	70
Tabla 29 Taludes de relleno	70
Tabla 30 Características geométricas	72

Tabla 31 Descripción de la logística	. 72
Tabla 32 Estaciones meteorológicas consultadas	. 73
Tabla 33 Estaciones consultadas	. 74
Tabla 34 Valores máximos de precipitaciones en 24 horas mensual	. 76
Tabla 35 Valores máximos recomendados de riesgo admisible de obras d	е
drenaje	. 78
Tabla 36 Resumen de periodos de retorno	. 80
Tabla 37 Valores de coeficiente de rugosidad de Manning	. 82
Tabla 38 Parámetros hidráulicos por cada tramo de cunetas: Tramo I:	
Marayzondor – Santo Domingo de Rondos	. 83
Tabla 39 Tramo II: Marayzondor – Huillaparac	. 86
Tabla 40 Tramo I: Marayzondor – Santo Domingo de Rondos	. 89
Tabla 41 Tramo II: Marayzondor – Huillaparac	. 91
Tabla 42 Tipo de superficie	. 93
Tabla 43 Coeficiente de escorrentía método racional	. 94
Tabla 44 Caudal de alcantarilla Tramo 1	. 95
Tabla 45 Caudal de alcantarilla Tramo 2	. 96
Tabla 46 Dimensiones de alcantarilla Tramo 1	. 97
Tabla 47 Dimensiones de alcantarilla Tramo 2	. 98
Tabla 48 Caudales de quebradas para diferentes periodos de retorno	100
Tabla 49 Resumen de parámetros hidráulicos	100
Tabla 50 Parámetros para cálculo de socavación	101
Tabla 51 Tramos	107
Tabla 52 Alcantarilla tipo marco Tramo 1	108
Tabla 53 Alcantarilla tipo marco Tramo 2	108
Tabla 54 Colores de Seguridad	116
Tabla 55 Color de contraste	117
Tabla 56 Características actuales de la vía	119
Tabla 57 Resumen de metrados	122

ÍNDICE DE FIGURAS

Figura 1 Elemento de una curva simple	26
Figura 2 Ubicación regional de Huánuco – provincia de Ambo – dis	trito San
Rafae.l	44
Figura 3 Medición del área de botadero	54
Figura 4 Trazo y replanteo de la carretera	56
Figura 5 Colocación de afirmado	58
Figura 6 Configuraciones recomendables	63
Figura 7 Curva de Vuelta	64
Figura 8 Colocación material de afirmado	71
Figura 9 Ubicación de punto geodésico existente	81
Figura 10 Cuneta tipo 1	81
Figura 11 Socavación general en el cauce	102
Figura 12 Señalización	110
Figura 13 Señal de prohibido adelantar	111
Figura 14 Señales preventivas	111
Figura 15 Señales informativas	112
Figura 16 Guardavías	113

RESUMEN

El presente trabajo de suficiencia profesional se realizó con el objetivo de construir un camino vecinal para mejorar la calidad de vida en el centro poblado de Marayzondor - Santo Domingo - Huillaparac, Distrito De San Rafael - Ambo - Huánuco. La metodología de competencia profesional corresponde a la investigación aplicada, utilizando conocimientos, teorías y ciencias, para luego aplicarlos en la construcción de un camino vecinal para mejorar la calidad de vida en el centro rural de Marayzondor; el estudio define el nivel descriptivo. Con respecto a las pruebas mecánicas del suelo planificado, se puede decir que las estructuras en estudio son redes viales para determinar el tipo de suelo a excavar en las áreas donde se colocará la maquinaria y el equipo; este suelo está clasificado como área natural, y también hay áreas con materiales semirocosos y rocosos. En cuanto al estudio topográfico, podemos mencionar que el centro rural de Maraysondor niveló incorrectamente los caminos típicos de la zona, y la topografía del área del proyecto es diferente, con zonas montañosas de diferentes pendientes, con algunas limitaciones en el desarrollo de la comercialización del producto y más tráfico, pero permite llevar a cabo el proyecto sin dificultad. Por último, es necesario indicar la falta de carreteras en la zona y no reducir el tiempo en el tráfico hacia el centro de la población y el exterior. Por lo tanto, se concluye que los estudios realizados da un análisis de vulnerabilidad en la construcción del camino vecinal para mejorar la calidad de vida de los pobladores en el centro poblado Marayzondor - Santo Domingo de Rondos - Huillaparac, distrito de San Rafael - Ambo - Huánuco; Se puede decir que las estructuras consideradas en el estudio para determinar el tipo de topografía de este suelo se clasifican como suelo estándar, y también representan áreas como materiales semirocosos y rocosos formados por depósitos de grava con presencia de polioles. También cerca de los bordes de las ciudades cercanas.

Palabras claves: camino, calidad de vida, vulnerabilidad de ejecución de obra, construcción de la vía, servicios.

ABSTRACT

The present work of professional sufficiency was carried out with the objective of building a neighborhood road to improve the quality of life in the populated center of Marayzondor - Santo Domingo - Huillaparac, District of San Rafael - Ambo - Huánuco. The professional competence methodology corresponds to applied research, using knowledge, theories and sciences, to later apply them in the construction of a local road to improve the quality of life in the rural center of Marayzondor; the study defines the descriptive level. Regarding the mechanical tests of the planned soil, it can be said that the structures under study are road networks to determine the type of soil to be excavated in the areas where the machinery and equipment will be placed; this soil is classified as a natural area, and there are also areas with semirocky and rocky materials. Regarding the topographic study, we can mention that the rural center of Maraysondor incorrectly leveled the typical roads of the area, and the topography of the project area is different, with mountainous areas of different slopes, with some limitations in the development of the commercialization of the product and more traffic, but allows the project to be carried out without difficulty. Finally, it is necessary to indicate the lack of roads in the area and not reduce the time in traffic towards the center of the population and abroad. Therefore, it is concluded that the studies carried out give a vulnerability analysis in the construction of the local road to improve the quality of life of the inhabitants in the Marayzondor - Santo Domingo de Rondos - Huillaparac - district of San Rafael - Ambo - Huanuco; It can be said that the structures considered in the study to determine the type of topography of this soil are classified as standard soil, and also represent areas such as semi-rocky and rocky materials formed by gravel deposits with the presence of polyols. Also close to the edges of the nearby cities.

Keywords: road, quality of life, vulnerability of work execution, road construction, services.

INTRODUCCIÓN

En el centro poblado de "Marayzondor - Santo Domingo - Huillaparac, Distrito De San Rafael - Ambo - Huánuco", no existe una carretera hacia dicho pueblo. Además si presenta, consecuencias irreversibles para las empresas, la educación y la salud de la población, es muy urgente tener una calle viva dedicada al transporte, comercio, tráfico y otros con el fin de mejorar la calidad de vida, Como señala el MTC, son precisamente los que se utilizan en beneficio de la población los que deben cumplir los requisitos de la legislación vigente; en este caso el Gobierno Regional de Huánuco a través de la Sub Gerencia de Obras y Supervisión, viene ejecutando la obra "Construcción del camino vecinal Marayzondor - Santo Domingo - Huillaparac, Distrito De San Rafael - Ambo - Huánuco. El presente estudio de investigación se divide en 4 capítulos:

Capítulo I; corresponde a los aspectos de la entidad receptora, en este caso a Santo Domingo de Rondos, en el capítulo II; la descripción detallada del área, con respecto al capítulo III; se identifica la situación problemática, el marco teórico y la metodología, en el capítulo IV, los resultados y análisis del estudio contribuyen a la resolución de problemas; Además, las conclusiones del estudio que finalmente reflejan incluyen recomendaciones, referencias bibliográficas y adiciones que confirman la precisión del estudio del camino vecinal de Marayzondor - Santo Domingo - Huillaparac, Distrito De San Rafael - Ambo - Huánuco.

CAPÍTULO I

PROBLEMA DE INVESTIGACIÓN

1.1. DESCRIPCIÓN DEL PROBLEMA

Los habitantes de los centros poblados de Marayzondor, Santo Domingo de Rondos y Huillaparac, se trasladan por un camino existente en malas condiciones transitables que conecta hasta cierta parte de Santo Domingo de Rondos, y existe otra Ruta que va desde el fundo Chasqui hasta Santo Domingo de Rondos, pasando por el centro poblado de Pamachupan. Camino vecinal que, los pobladores se ven obligados a transitarlos siendo este muy alejado a los lugares que habitan, es por ello que a la construcción de la carretera en estudio los beneficiarios directos son los pobladores de toda esta zona. Lograr una eficiente transitabilidad en la vía, con la finalidad de propiciar el desarrollo socioeconómico de la población y elevar de esta manera la calidad de vida de la población.

1.2. FORMULACIÓN DEL PROBLEMA

1.2.1. PROBLEMA GENERAL

¿En qué medida la construcción del camino vecinal permite mejorar la calidad de vida en Marayzondor - Santo Domingo - Huillaparac, distrito de San Rafael - Ambo – Huánuco, 2022?

1.3. OBJETIVOS

1.3.1. OBJETIVO GENERAL

Demostrar si la construcción del camino vecinal permite mejorar la calidad de vida en Marayzondor - Santo Domingo - Huillaparac, distrito de San Rafael - Ambo – Huánuco, 2022.

1.3.2. OBJETIVOS ESPECÍFICOS

- Analizar si los estudios de impacto ambiental del proyecto construcción del camino vecinal permite mejorar la calidad de vida

- en Marayzondor Santo Domingo de Romdos Huillaparac, distrito de San Rafael Ambo Huánuco, 2022.
- Demostrar si los estudios de levantamiento topográfico del proyecto construcción del camino vecinal permite mejorar la calidad de vida en Marayzondor - Santo Domingo de Romdos - Huillaparac, distrito de San Rafael - Ambo – Huánuco, 2022.
- Realizar el presupuesto de la construcción del camino vecinal para mejorar la calidad de vida en Marayzondor - Santo Domingo de Romdos - Huillaparac, distrito de San Rafael - Ambo – Huánuco, 2022.

1.4. JUSTIFICACIÓN DE LA INVESTIGACIÓN

1.4.1. JUSTIFICACIÓN TEÓRICA

La investigación se basa en demostrar si la construcción del camino vecinal permite mejorar la calidad de vida en Marayzondor - Santo Domingo - Huillaparac, distrito de San Rafael - Ambo – Huánuco, 2022, realizando el proceso de ejcucion de obra, estudios de suelo, estudios de impacto ambiental, levantamiento topográfico y teniendo el presupuesto que conlleva la ejecución. Los resultados obtenidos nos permitirán evaluar la eficiencia de la gestión vial por parte de las entidades gubernamentales.

1.4.2. JUSTIFICACIÓN PRÁCTICA

El presente trabajo de suficiencia profesional, es justificado a medida que se realizó un análisis de vulnerabilidad en la construcción del camino vecinal para mejorar la calidad de vida de los pobladores con una plataforma de carretera de 16.752 km con un ancho de calzada de 4.50 m a nivel de afirmado con un espesor e=20 cm, con una pendiente longitudinal máxima de 12% para mejorar la calidad de vida en Marayzondor - Santo Domingo - Huillaparac, distrito de San Rafael-Ambo – Huánuco.

1.4.3. JUSTIFICACIÓN METODOLÓGICA

Se justifica metodológicamente bajo un enfoque técnico, la investigación demostrará la importancia de realizar estudios previos que permiten describir de forma precisa el estado de condición real del camino a intervenir (inventario vial actualizado). Sin embargo, existen intervenciones que se realizan sin previo análisis ni planificación, conllevando así a una mala toma de decisiones, por ejemplo, la inadecuada asignación de los recursos financieros, afectando directamente al patrimonio vial. Bajo un enfoque social, la presente investigación es importante ya que, al emplearse bien los recursos del estado, esto contribuirá al desarrollo de la población. Es en este sentido que su patrimonio vial aumentará y las condiciones de Transitabilidad serán óptimas para la integración de la población. Adicionalmente, si los recursos económicos de las entidades gubernamentales, proveniente de la población contribuyente de impuestos, son asignados correctamente a los proyectos viales, estos aportan tranquilidad a la población beneficiada.

1.5. LIMITACIONES DE LA INVESTIGACIÓN

Cabe recalcar que en el proceso de elaboración de este trabajo de suficiencia profesional no existió ningún tipo de limitación, se tuvo el apoyo de la empresa supervisora en todo el tiempo que se desarrolló dicho estudio.

1.6. VIABILIDAD DE LA INVESTIGACIÓN

El presente trabajo de suficiencia profesional es viable porque busca mejorar la calidad de vida de los pobladores con la construcción de un camino vecinal para mejorar el tránsito y progreso de los ciudadanos, generando empleos y libre comercialización de sus productos agrícolas. Por lo cual:

- Se contó con el acceso a información sobre los estudios socioambientales, levantamiento topográfico y realizar los presupuestos para la ejecución.
- Se contó con los recursos económicos suficientes para cubrir la elaboración de este trabajo de suficiencia profesional.

- Se contó con el recurso tiempo, como trabajador de la obra.
- De igual manera se contó con el recurso humano puesto a mi disponibilidad de elaborar este trabajo y la de profesionales capacitados en el área que me brindan su arduo conocimiento y experiencia para culminación exitosa de este trabajo de suficiencia profesional.

CAPÍTULO II

MARCO TEÓRICO

2.1. ANTECEDENTES DE LA INVESTIGACIÓN

2.1.1. ANTECEDENTES NACIONALES

Garces y Jordan (2022), en su tesis: "Mejoramiento de Camino Vecinal previa Evaluación de la Condición de la vía en la Quebrada Honda – Selva Alegre – Sigasiato – Yuveni – Chuanquiri, Distrito de Vilcabamba, Provincia de Convención, Departamento de Cusco, 2022". [Trabajo de Suficiencia Profesional, Universidad César Vallejo].

El objetivo general de este trabajo de suficiencia profesional fue determinar cómo mejorar la evaluación preliminar de las condiciones primaverales en la acera de la Quebrada Honda - Selva Alegre -Sigasiato – Juvenil – distrito Chuanqueri, distrito Vilcabamba, 2022. Utilizó la metodología PCI a través de un enfoque cuantitativo, descriptivo y no experimental de corte transversal. Trabajó con una población de 50 unidades de muestra derivadas de un 1km de la Se Quebrada Honda evaluaron veinticinco encuestados metodológicos para el muestreo probabilístico. Obtenido de la evaluación previa de la carretera a 1 km del asentamiento vial en quebrada Honda - Selva Alegre - Sigasiato - Juveni - Chuanqueri en Vilcabamba reveló tres tramos en muy buenas condiciones, muy débiles y honestos, se recomendó un plan de mantenimiento o reconstrucción.

Reátegui y Alvarado (2021), en su tesis: "Estudio definitivo del mejoramiento del camino vecinal CC.PP. San Juan de Talliquihui – CC.PP. Machu Picchu, L= 18.833 Km., distrito de Santa Rosa, provincia de El Dorado - San Martín". [Tesis de pregrado, Universidad Nacional de San Martín].

Este estudio tiene como objetivo hacer una contribución científica y técnica para resolver el problema de la navegabilidad de las

carreteras, que, una vez implementadas, permite que la carretera adyacente contribuya al desarrollo socioeconómico de la población beneficiaria. La investigación es de tipo aplicada y se ha llevado a cabo en el Distrito de Santa Rosa, Provincia de El Dorado, en la Región San Martín. Este trabajo se desarrolló aplicando las teorías y modelos existentes de terreno, impacto ambiental, mecánica de suelos, transporte, hidrología, aguas residuales, diseño de carreteras, costo, presupuesto, concreto y otros factores del suelo, lo que permitió finalmente estudiar la mejora de la condición de las carreteras en el área CC.PP. San Juan de Talliquihui - CC.PP. Machu Picchu, L= 18.333 Km., distrito Santa Rosa, Provincia de El Dorado- San Martín. Para estudiar el estudio final de la mejora de carreteras en el campo de la investigación, se utilizaron métodos técnicos bien conocidos de este tipo de investigación en dos etapas de trabajo: en el campo y en el tesoro. En la etapa de campo, se realizó una evaluación e inventario de la ruta actual: la definición de la ruta final, un estudio topográfico de la ruta, que consiste en planificación, alineación, sección y ubicación de Bench Mark, preparar Calicata para estudios mecánicos de suelos; Estudios de tráfico, estudios de impacto ambiental, estudios hidrológicos y de drenaje, diseño de carreteras, investigación económica para obtener un estudio definitivo sobre la mejora de la carretera vecina. En la fase del Consejo de Ministros, se procesaron e interpretaron los datos obtenidos sobre el terreno, Se realizaron diversas pruebas de mecánica de suelos y planos topográficos, se estudió el tráfico, así como la planificación del firme de la carretera a nivel de declaración y datos hidrológicos y de alcantarillado en la carretera, así como el coste y presupuesto del proyecto. Los resultados del estudio muestran claramente que la correcta aplicación de la teoría la investigación y los resultados del tratamiento, es posible lograr una investigación definitiva para mejorar la carretera en el área.

Chumacero y Aguilar (2018), en su tesis: "Mejoramiento del Camino Vecinal Utcurarca – Cerro San Pablo, Distrito de Alberto Leveau,

Provincia de San Martín.". [Tesis de pregrado, Universidad Nacional de San Martín].

El proyecto tiene como objetivo implementar una solución ideal, rápida y rentable para mejorar las carreteras que tienen demasiados caminos abandonados o sin pavimentar que conducen a la erosión, agrietamiento, etc. Esto genera inconvenientes para el consumidor, confusión municipal y en el peor de los casos, el reemplazo completo del camino vecinal, esto surgió por la necesidad de los pobladores, incluidos los productores del sector Utcararca-Cerro San Pablo, de solucionar los problemas ocasionados por el mal estado de las vías de acceso, que encarecen mucho el transporte de los productos que se cultivan en esta zona; por lo tanto, este estudio busca encontrar soluciones a estos problemas, a partir de un diagnóstico inicial de la realidad asociada a las condiciones de las vías y su importancia para mejorar el Camino vecinal, se realizaron estudios viales iniciales, como estudios de tráfico en el sitio, en la oficina se realizaron cálculos de diseño de acuerdo con los estándares de diseño de ingeniería vial y de tráfico ligero para determinar los siguientes factores: El espesor de la estructura y los refuerzos necesarios para hacerla optimizada para la navegación de vehículos ligeros, pesados y fácilmente adaptable, esto permite a los fabricantes transportar más fácilmente sus productos al mercado de consumo en buenas condiciones con costos de envío reducidos. Se desarrolla el mejoramiento de caminos adyacentes a caminos mediante la introducción de elementos de señalización vial para contribuir al desarrollo socioeconómico de los productores del sector Utcurarca - Cerro San Pablo.

Estacio y Porta (2021), en su tesis: "Propuesta de mejora del camino vecinal Huamangaga – Yaca, según Norma diseño geométrico – 2018, Huánuco 2021". [Tesis de pregrado, Universidad César Vallejo].

El objetivo principal de este trabajo es asegurar el mejoramiento de la carretera en el área Huamanga - Yaka (km 0 + 000 - 5 + 000) de acuerdo con los estándares de la Guía de Carreteras - Diseño de Ingeniería (DG-2018). Los trabajos de investigación sobre el tipo

utilizado y su diseño descriptivo son no experimentales y aleatorios, comenzamos a diagnosticar las características del diseño actual, después de lo cual realizamos evaluaciones de propiedades geométricas en plantas; perfil y sección transversal, y finalmente comparación antes y después de la carretera, el equipo utilizado es monitoreo directo utilizando los módulos y dispositivos necesarios para registrar información en el vecindario; Tras la implementación y evaluación del método, se obtuvieron los siguientes resultados: radio mínimo, pendiente mínima y El exceso de oferta, las bombas, los acabados y los cuadrados de transición no cumplen con los parámetros de 20%, 31%, 100%, 95%, 55% y 60%. Llegó a la conclusión de que la ruta no cumple con los parámetros y propuso mejorar las características de la carretera, de acuerdo con las normas de la Duma Estatal de Agricultura.

2.1.2. ANTECEDENTES LOCALES

Santiago (2019), en su tesis: "Eficiencia del modelo de gestión de mantenimiento rutinario en el camino vecinal, tramo puente Quipas – Yanas, Dos de Mayo 2018". [Tesis de pregrado, Universidad Nacional Hermilio Valdizan].

El mantenimiento de la infraestructura vial ha cobrado mayor importancia en los últimos años, es por ello que se ha analizado la carretera vecinal en el departamento de Puente Cuepas en la zona de Yanag de Huánuco como modelo para implementar una adecuada gestión del mantenimiento vial, permitiendo que las carreteras estén en perfecto estado.

El objetivo del estudio es investigar los factores que influyen en el sistema de gestión de carreteras, como la composición del organismo responsable del seguimiento de las actividades de mantenimiento, los tipos de contratos, los daños en las aceras, las aguas residuales y las condiciones de señalización, la clasificación, el nivel de servicio, la clasificación de vías de poco tránsito según las características del piso. Algunos de estos datos fueron proporcionados por el Instituto

Vial, el organismo responsable de desarrollar la gestión vial en la provincia de Dos de Mayo. Sobre la base de todos los datos y pruebas proporcionados por el Ministerio de Transporte y Comunicaciones, se realizan los cálculos necesarios para evaluar el modelo de gestión vial utilizado en esta provincia y si existen falencias en algunos aspectos.

Mozombite (2018), en su tesis: "Mejoramiento del camino vecinal (Desde el centro poblado San José hasta el caserío San Juan), A.H ampliación San José II etapa, distrito de Yarinacocha, provincia de Coronel Portillo, región Ucayali". [Tesis de pregrado, Universidad de Huánuco].

El mal estado de las vías afecta directamente el transporte de mercancías y pasajeros hacia los caseríos conectadas a la vía principal que une el Centro Poblado San José II con el caserío San Juan del distrito de Yarinacocha, provincia. Coronel Portillo, región Ucayali. Los caseríos de la zona de Yarinacocha que forman parte de esta intervención están conectados a la red vial nacional (Carretera Federico Basadre) y la Av. Yarinacocha, ubicado cerca de caminos vecinales, ubicado en el Distrito de Yarinacocha, provincia de Coronel Portillo, donde la integración de los caseríos benefactores con los poblados situados a lo largo de dicha red vial nacional es importante para un mayor desarrollo social y económico.

Los moradores de los diversos caseríos que utilizan esta vía son responsables de su mantenimiento ocasional hasta el día de hoy; pero el mal tiempo y el clima conducen a una degradación acelerada de la vía, por lo que la realización de este proyecto es fundamental.

Gresslin (2019), en su tesis: "Análisis de la geometría del trazado en relación con la seguridad vial de caminos vecinales de la provincia de Pachitea". [Tesis de pregrado, Universidad de Hermilio Valdizan].

La seguridad vial se refiere al diseño de carreteras y está relacionada principalmente, por un lado, con el cumplimiento de los requisitos para el diseño de carreteras; por otro lado, el grado de consistencia en el diseño de carreteras. La seguridad vial se ha limitado durante mucho

tiempo al cumplimiento de las directrices técnicas de diseño. En esta guía, las calles de los barrios antiguos están diseñadas de acuerdo con estándares manuales obsoletos.

Esta Guía de Itinerarios de Diseño Técnico (DG-2018) establece los siguientes criterios y procedimientos para el establecimiento de normas técnicas máximas y mínimas que deben cumplirse, cuya violación puede dar lugar a deficiencias en el movimiento de los consumidores en condiciones de seguridad aceptables.

A la luz de esta situación, este estudio examina los desarrollos de ingeniería desarrollados teniendo en cuenta la seguridad vial para una serie de calles en las cercanías de la provincia de Pachitea. Para este propósito, se seleccionaron 3 calles en el vecindario, que formarán la red vial urbana de la provincia de Pachitea, a través de la cual se identificaron 3 sitios, en los que se restaurará la geometría. El equipo restaurado permitió verificar el cumplimiento de los principales parámetros del proyecto técnico (nivel, perfil y sección) en relación con los requisitos del directorio de carreteras "Diseño de ingeniería (DG-2018)". Además, la consistencia de la secuencia de los segmentos estudiados se estimó sobre la base de velocidades operativas calculadas en curvas horizontales utilizando el modelo de velocidad colombiano aprobado.

Los resultados mostraron que el radio de curvatura horizontal en comparación con el utilizado por la carretera de Diseño de Ingeniería (DG-2018) requiere 65.92% y 35.61% de la longitud tangencial horizontal, respectivamente. En cuanto a la secuencia de clasificación, se clasificó entre ángulos sucesivos y los resultados mostraron lo siguiente: 54.75% es bueno, esto significa que el concepto de consistencia está bien, esto se debe a que existe consistencia entre giros consecutivos para permitir una conducción segura. Resuelto el 14,95% se propuso una realineación rápida de la curva para evitar los problemas identificados con la desalineación de la curva horizontal. Para problemas de consistencia, recomendamos

instalar banderas de protección y establecerlas en Falso donde esté permitido.

2.2. BASES TEÓRICAS

2.2.1. CARRETERA

2.2.1.1. CLASIFICACIÓN

Según San-Jaime et al. (2007). En la red de carreteras se podrían distinguir los siguientes tipos de vía:

- Autopistas y Autovías: Carreteras más grandes y estándares de diseño más estrictos.
- Carreteras Nacionales: Son carreteras de un solo sentido y de dos sentidos con fuertes desvíos de 2-2,5 metros. pertenecen al estado.
- Carreteras comarcales: También en su mayoría carreteras de uno o dos carriles. Los tamaños de los hombros varían según la región, estos generalmente conectan las capitales de comarca con las capitales estatales o las carreteras federales, o pueden construirse como carreteras de circunvalación alrededor de las capitales estatales.
- Carreteras locales: Conectan dos ciudades, dependen de las autoridades de la ciudad, diputados y a veces incluso los municipios.

También conocido como carril, es un término que se utiliza para describir una calzada destinada principalmente al tráfico de vehículos. Está destinado al uso público y puede conectar comunicaciones con otro tipo de vías, como autovías, o con fincas vecinas y diversas vías de acceso (Velásquez, 2015).

De acuerdo con su función, el Ministerio de Transportes y Comunicaciones establece en los Lineamientos de Diseño de Carreteras de Bajo Tránsito, que conforman la mayoría del Sistema Nacional de Carreteras (SINAC), que las carreteras se clasifican de acuerdo a su función de la siguiente manera:

- a) Carreteras de red vial nacional
- b) Carreteras de la red vial departamental o regional
- c) Carreteras de la red vial vecinal o rural

Según la Oficina, el Ministerio de Transportes y Comunicaciones señala la Guía para el Diseño de Carreteras Afirmadas con Bajo Tránsito que, si bien las normas de diseño vial en el Perú no tienen en cuenta la subclasificación de los caminos vecinales, el departamento de Asesoría Técnica del Ministerio de Transportes y Comunicaciones publicará un borrador de los criterios para el diseño de calles vecinales, integrando los estándares viales existentes con el fin de lograr un uso más eficiente de la inversión.

Subcategoría de caminos locales en la que el proyecto se considera un camino vecinal Tipo CV-3.

- Camino CV 1 trafico de diseño con un IMD entre 100 y 200 veh/dia
- Camino CV 2 trafico de diseño con un IMD entre 30 y 200 veh/dia
- Camino CV 3 trafico de diseño con un IMD hasta 30 veh/dia

2.2.2. DERECHO DE VÍA

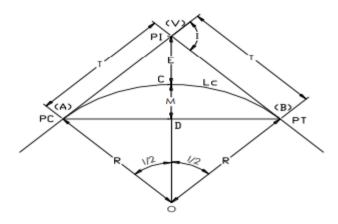
Ancho normal: El MTC señala que el tramo de terreno o camino donde confluyen el camino y su prolongación, se extiende hasta 5.00 metros más allá del borde de una zanja, dique o vía fluvial. Manténgase alejado de alcantarillas que puedan construirse.

Ancho mínimo: El Manual de Diseño de Ingeniería Vial del MTC, página 64, también establece que "en áreas urbanas, el ancho requerido no debe ser menor de 10.00 m, es decir, 5.00 m. A cada lado de la línea central, en la zona de cultivo el ancho requerido en el no debe ser menor de 15 m. Zonas de montaña el ancho exigido es de 20 metros.

Previsión de ensanche: De igual modo, en las zonas donde haya mucho movimiento de animales y ganado que no se pueda devolver con bridas, se ampliará suficientemente la zona.

2.2.3. ALINEAMIENTO HORIZONTAL

El Manual de Diseño de Carreteras sin Pavimentar (las "Directrices") preparado por MTC establece:


Consideraciones para la dirección horizontal: El Manual establece: La alineación horizontal garantizará el movimiento continuo de los vehículos, teniendo cuidado de mantener la misma velocidad de dirección en la carretera el mayor tiempo posible. La dirección de la carretera se adapta directamente a las condiciones del terreno, y el número de cambios de dirección dentro de la causa disminuye. El trazado propuesto de una sección de carretera consiste en una secuencia correspondiente de líneas rectas (tangenciales), curvas circulares y curvas de transición.

Curvas horizontales: El manual también establece que el radio de curvatura mínimo es un límite que depende del paso máximo y el coeficiente de arrastre máximo para una velocidad de diseño dada. Este gráfico muestra el radio mínimo permitido y la pendiente máxima en cada velocidad de diseño. Al clasificar los tramos de carretera planificados en función de la velocidad de diseño, el radio mínimo y la pendiente máxima como parámetros clave, se deben evitar las curvas de radio mínimo. Esto a menudo requiere un gran radio de giro con un radio mínimo en las situaciones más difíciles.

Elementos de curvas horizontales: Los elementos de curva horizontal que permiten su colocación y distribución en el campo son:

Figura 1

Elemento de una curva simple

Nota: Curvas horizontales de ubicación y trazo con el cual se tiene las curvas del camino vecinal.

Fuente: Manual de carretera: diseño geométrico (MTC) DG-2018.

Tabla 1Elementos de curvas simples

Elemento	Símbolo	Fórmula
Tangente	Т	T=R tan(1/2)
Longitud de curva	Lc	Lc= □RI/180°
Cuerda	С	C=2R Sen(I/2)
Externa	Е	E=R[Sec(I/2)-1]
Flecha	F	F= R[1-Cos(I/2)]

Nota. Formulas y símbolos de los elementos de curva simple. Fuente: Manual de carretera: diseño geométrico (MTC) DG-2018.

El peralte de la carretera: El manual desarrollado por el MTC dice lo siguiente: El peralte es la altura de la parte exterior de la parte curva de la carretera en relación con la parte interior de la carretera para hacer frente a la fuerza centrífuga. Las curvas horizontales deben estar dispersas.

El valor máximo podrá tener un valor normal del 8 % y un valor excepcional del 10 %. En carreteras sin pavimentar bien comprimidas en

casos extremos, se puede justificar un máximo de aproximadamente el 12%.

El radio mínimo de curvatura (Rmin) es el valor límite determinado sobre la base del valor máximo de borde (emax) y el coeficiente máximo de fricción (fmax) determinado para la velocidad de avance (V). El valor del radio mínimo se puede calcular utilizando la expresión:

Rmin=
$$\frac{V^2}{127(0.01 e m \pm x + f m \pm x)}$$

Tabla 2Radios mínimos y peraltes máximas en curvas

Velocidad directriz (Km/k)	Peralte máximo e (%)	Valor límite de fricción f _{max}	Calculado del radio mínimo (m)	Redondeo del mínimo (m)
20	4.0	0.18	14.3	15
30	4.0	0.17	33.7	35
40	4.0	0.17	60.0	60
50	4.0	0.16	98.4	100
60	4.0	0.15	149.1	150
20	6.0	0.18	13.1	15
30	6.0	0.17	30.8	30
40	6.0	0.17	54.7	55
50	6.0	0.16	89.4	90
60	6.0	0.15	134.9	135
20	8.0	0.18	12.1	10
30	8.0	0.17	28.3	30
40	8.0	0.17	50.4	50
50	8.0	0.16	82.0	80
60	8.0	0.15	123.2	125
20	10.0	0.18	11.2	10
30	10.0	0.17	26.2	25
40	10.0	0.17	46.6	45
50	10.0	0.16	75.7	75
60	10.0	0.15	113.3	115
20	12.0	0.18	10.5	10

30	12.0	0.17	24.4	25	
40	12.0	0.17	43.4	45	
50	12.0	0.16	70.3	70	
60	12.0	0.15	104.9	105	

Nota. Manual para el diseño de carreteras no pavimentadas de bajo volumen de tránsito.

Fuente: Manual de carretera: diseño geométrico (MTC) DG-2018.

2.2.4. ALINEAMIENTO VERTICAL

2.2.4.1. CONSIDERACIONES PARA EL ALINEAMIENTO VERTICAL

El manual establece que la estructura vertical es un perfil longitudinal lateral que forma un oblicuo formado por una serie de líneas conectadas por arcos verticales correspondientes a los transversales.

A los efectos del proyecto, la dirección de las carreteras se determinará sobre la base del progreso; Se asocian con una mayor altura, y las desventajas son aquellas que causan una pérdida de altura. Las curvas verticales entre dos pendientes consecutivas permiten crear un paso entre pendientes de diferentes tamaños, evitando una fuerte caída en la pendiente. El diseño de estas curvas proporciona suficientes distancias de visualización.

El sistema de medición del proyecto se centrará tanto como sea posible en el nivel medio del mar al que se refieren los hitos de estudio a lo largo del Instituto Geográfico Nacional (BM), no hay necesidad de fugas en la carretera y transiciones graduales continuas entre secciones con diferentes pendientes.

Para la determinación de los perfiles longitudinales se utilizarán los siguientes criterios, salvo en casos suficientemente justificados:

• En una calzada de enlace único, el eje que define el perfil debe coincidir con el eje central de la calzada.

- Excepto en casos especiales en terrenos planos, la pendiente debe estar por encima del suelo para mejorar el drenaje.
- En terrenos montañosos, la pendiente se adapta a la curvatura del terreno de acuerdo con los estándares de seguridad, visibilidad y estética por razones económicas.
- En terrenos montañosos y escarpados, la pendiente también es adecuada para aflojar el terreno, evitando estirarse en la pendiente cuando es necesario superar una gran pendiente, ya que esto resultará en una extensión innecesaria de la carretera.
- Es recomendable tener una dificultad consistente en pendientes moderadas que ofrezcan diferencias graduales entre direcciones consistentes con la clase de la carretera y la topografía del terreno.
- Si lo desea, puede utilizar valores específicos de la pendiente máxima y la longitud crítica en el paquete. El tipo y el tiempo de aplicación de inclinación determinan la calidad y el aspecto de la carretera.

2.2.4.2. PENDIENTE

El manual dice: "En las secciones de corte, es mejor evitar el uso de pendientes inferiores al 0,5%. Se pueden utilizar pendientes horizontales si es posible construir zanjas adyacentes con la pendiente necesaria para el drenaje, y la capacidad de la carretera es de al menos el 2%.

2.2.5. SECCIÓN TRANSVERSAL

2.2.5.1. CALZADA

El manual establece que "cuando el IMDA está diseñado a menos de 50 carreteras muy bajas, la carretera se puede extender a un carril. En otros casos, el camino debe ser en dos direcciones. La Tabla 3 muestra los valores de ancho recto relevantes para cada

velocidad de dirección en términos de tráfico esperado y tamaño de la carretera.

Tabla 3

Ancho mínimo de calzada en tangente

Tráfico IMDA	< 15	16 a	a 50	51 a	100	101 a	200
Velocidad km/h	*		**		**		**
25	3.5	3.5	5.5	5.5	5.5	5.5	6
30	3.5	4	5.5	5.5	5.5	5.5	6
40	3.5	5.5	5.5	5.5	6	6	6
50	3.5	5.5	6	5.5	6	6	6
60		5.5	6	5.5	6	6	6

^{*} Carril con intersección y/o área de intersección.

Nota. Directrices para el diseño de caminos de tierra de bajo tráfico.

Fuente: Manual de carretera: diseño geométrico (MTC) DG-2018.

Del mismo modo, el manual establece que, en las secciones rectas, la sección transversal de la carretera contiene pendientes transversales (bombeo) desde el centro hasta cada borde para facilitar el drenaje superficial y evitar la entrada de agua. Las carreteras sin pavimentar se bombean con valores del 2% al 3%; en secciones curvas, el bombeo se reemplaza por bordes. En carreteras de poco tráfico con IMDA por debajo de 200 W / día, la bomba puede ser reemplazada por una pendiente transversal de entre 2.5% y 3% en un lado de la carretera. Para determinar el ancho de la carretera en una sección curva, es necesario tener en cuenta las secciones indicadas en la tabla 4.

^{**} Carreteras con alta prevalencia de tráfico pesado.

 Tabla 4

 Velocidad directriz de la radio de la curva

Velocidad	Radio de Curva (m)																
directriz km/h	10	15	20	30	40	50	60	80	100	125	150	200	300	400	500	750	1000
20	•	6.52	4.73	3.13	2.37	1.92	1.62	1.24	1.01	0.83	0.7	0.55	0.39	0.3	0.25	0.18	0.14
30			4.92	3.31	2.53	2.6	1.74	1.35	1.11	0.92	0.79	0.62	0.44	0.35	0.3	0.22	0.18
40					2.68	2.2	1.87	1.46	1.21	1.01	0.87	0.69	0.5	0.4	0.34	0.25	0.24
50								1.57	1.31	1.1	0.95	0.76	0.58	0.45	0.39	0.29	0.24
60									1.41	1.19	1.03	0.83	0.62	0.5	0.43	0.33	0.27

Sobre el ancho de la calzada en curvas circulares (m) (Calzada de dos carriles de circulación.

* Para radio de 10 m se debe usar plantilla de la maniobra del vehículo de diseño

2.2.5.2. BERMAS

La instrucción dice: Se deben proporcionar bancos de al menos 0,50 metros de ancho a cada lado de la carretera. Al instalar equipos de protección, se forma un ancho de al menos 0,50 metros.

El borde de la arcilla en la parte inferior del borde sigue la pendiente de su valor en más del 4%. De lo contrario, la pendiente de berma es del 4%. El borde de la parte superior de la caja debe inclinarse un 4% tanto como sea posible antes de inclinar los bordes para cavar en la zanja. La diferencia algebraica entre las pendientes transversales del techo y la superficie de la carretera es siempre igual o inferior al 7%. Es decir, si la dirección del borde es del 7%, entonces la sección transversal de la acera debe ser horizontal, y si el campo es más del 7%, la parte superior de Birmania debe inclinarse con una pendiente de al menos el 7% en relación con la carretera.

2.2.5.3. ANCHO DE LA PLATAFORMA

El ancho de la plataforma final en el suelo es la suma del ancho de la carretera y las restricciones. La plataforma a nivel de infraestructura se caracteriza por el ancho requerido para colocar las capas que componen la zanja, cunetas y el drenaje.

2.3. DEFINICIONES CONCEPTUALES

Alcantarilla. -Un acueducto subterráneo diseñado para descargar aguas residuales (Educalingo, 2022).

Nota. Manual para el diseño de carreteras no pavimentadas de bajo volumen de tránsito Fuente: Manual de carretera: diseño geométrico (MTC) DG-2018.

Cantera. - Un sitio de construcción abierto o subterráneo del cual se extraen agregados gruesos o finos y otros materiales de construcción (Ortiz, 2022).

Cubicación de Tierras. - Permite el cálculo de volumen de tierra que se moverá y que maquinaria será lo necesario (Esterlina, 2015).

Gastos generales. - Esto incluye costos fijos y variables. Polinomio: Estructura matemática formada por la suma de varios monómeros utilizados en la estructura de costos de la obra (Gestión, 2019).

Metrado. - Representa una medida o cálculo cuantitativo de la cantidad de trabajo realizado por turno (MVCS, 2011).

Pendiente. - Un ángulo de línea o ángulo de línea es el ángulo formado por una línea y su componente horizontal (Neurochispas, 2022).

Presupuesto. - Un plan financiero para consolidar y coordinar las actividades y los recursos de una empresa durante un período de tiempo para lograr las metas establecidas por la administración (Ramírez y Vicente, 2005).

Sistema Vecinal. - Premios construidos y mantenidos por las comunidades, a menudo más angostos que las calles. Puede conectar, en general, entre pequeños grupos de población y entre puntos importantes de una ciudad capital o municipio (Medina y Sevillano,2018).

2.4. VARIABLES

2.4.1. VARIABLE INDEPENDIENTE

Construcción de camino vecinal

2.4.2. VARIABLE DEPENDIENTE

Calidad de vida

2.5. OPERACIONALIZACIÓN DE LAS VARIABLES

Tabla 5Operacionalización de variables

Variables	Definición conceptual	Definición operacional	Dimensiones	Indicadores
Construcción de camino vecinal	Son los caminos al servicio para el pueblo, con la finalidad de poder transportarse con mayor facilidad hacia los exteriores	Aquel camino costeado, construido y conservado por el municipio, que suele ser más estrecho que las carreteras.	Estudio de suelo Estudio de impacto ambiental Levantamiento de estudio topográfico Costo y presupuesto	Estrategia de Manejo Ambienta Línea Base Ambiental y Social - Metrados (m1, m2, m3) - Costos unitarios - Presupuesto (S/.) - Cronograma de obra
Calidad de vida	La calidad de vida se definió como las condiciones de vida de individualmente, donde intervienen elementos subjetivos y objetivos, y La interacción entre las condiciones de vida y la satisfacción estable	A través de la escala de valores, aspiraciones y expectativas	Transitabilidad Comercializaci ón	Trabajos Preliminares Movilización y Desmovilización de, equipos.

2.6. MATERIALES Y MÉTODOS

2.6.1. TIPO DE INVESTIGACIÓN

Para Hernández (2010), el estudio es consistente con las especies aplicadas porque utiliza el conocimiento, las teorías y la ciencia para ser aplicado en la construcción de calles vecinas para mejorar la calidad de vida en Marayzondor - Santo Domingo de Rondos - Huillaparac, distrito de San Rafael - Ambo - Huánuco y anexos.

2.6.2. ENFOQUE

El trabajo de habilidades profesionales, en el que "se recopilan, analizan y evalúan datos cualitativos y cuantitativos, y al mismo tiempo la integración y la discusión conjunta, durante la cual se extraen conclusiones de toda la información recibida, en este sentido se puede observar que son ambiguos; después de la finalización de este proyecto para la construcción de la calle del vecino, se tuvieron en cuenta las necesidades de los residentes y los deseos presentados, que luego se pueden verificar con los residentes antes de la implementación de la documentación técnica (Sampieri, 2018).

2.6.3. ALCANCE O NIVEL

El estudio expone el nivel descriptivo ya que conduce a un análisis real de la situación de la población y su interpretación en respuesta a los acontecimientos (Sampieri, 2018).

En este caso, considere un análisis de vulnerabilidad de las estructuras viales estatales que se acercó a la situación del destinatario. Esto revela el problema al que se enfrenta actualmente debido a la ausencia del destinatario.

2.6.4. **DISEÑO**

El diseño de la investigación es no experimental, ya que el estudio se realizó sin la manipulación deliberada de variables y sólo se observaron los fenómenos en su ambiente natural para analizarlos (Hernández et all., 2005).

2.7. TÉCNICAS DE RECOLECCIÓN DE DATOS

La técnica utilizada en este estudio consistió en una revisión de documentos de ruta, referencias, monografías, artículos, directorios y reglamentos. Lo mismo sentí con la tecnología de vigilancia que me permitió seleccionar datos de laboratorio (Arias 2012, p.67).

2.7.1. INSTRUMENTOS DE RECOLECCIÓN DE DATOS

Equipos topográficos, brújula, GPS, nivel, estación total, trípode, prisma. Además, fichas de observación.

CAPÍTULO III

MARCO DESCRIPTIVO REFERENCIAL

3.1. DESCRIPCIÓN DE LA INSTITUCIÓN

3.1.1. NOMBRE O RAZÓN SOCIAL

Consorcio Supervisor Viales

3.1.2. RUBRO

El consorcio supervisor viales está integrado por los ing. Lenin Porfirio Palacios Campos y El Ing. Julio Víctor Martínez Quispe.

 Supervisión y consultoría de obras del entorno del distrito de San Rafael, "Consorcio Supervisor Viales".

El plantel técnico de la supervisión de obra.

- Representante legal Sr. Lenin Porfirio Palacios Campos
- Jefe de supervisor Ing. Lenin Porfirio Palacios Campos
- Asistente de jefe de supervisor Bachiller Bequer Shumagin Suarez
 Damazo
- Especialista en estructuras Ing. Hebert Benito Chamorro Durand
- Especialista en SSOMA Ing. Tania Yesselvi Doria Schmidt
- Ejecución de proyecto (obra), distrito de san Rafael, consorcio Vial San Rafael.

3.1.3. UBICACIÓN

Domicilio legal Av. Los olivos N° 147-B-segundo piso Cayhuayna baja Pillco Marca.

3.1.4. RESEÑA HISTÓRICA

El presente trabajo de suficiencia profesional titulado "Construcción del camino vecinal Marayzondor - Santo Domingo - Huillaparac, distrito de San Rafael - Ambo - Huánuco", fue declarado viable estableciendo la buena pro mediante un concurso público (licitación), el 14 de diciembre del 2020, por la oficina de selección de la Municipalidad Distrital de San Rafael cuyo

ganador fue la empresa "Consorcio vial San Rafael" con un presupuesto público de s/ 10,491,802.92 (diez millones cuatrocientos noventa y un mil ochocientos dos con 92/100 soles), financiado por el Ministerio de Transportes y Comunicaciones que incluye todos los impuestos de Ley cuyo monto comprende la ejecución de la obra, tributos, seguros transportes, inspecciones, pruebas en toda caso los costos laborales.

Con fecha 8 de enero del 2021 se recibió en mesa de partes la carta N° 01 - 2021- CVSR, con registro de trámite documentario N° 060 y con fecha 11 de enero la unidad de logística y control patrimonial con Registro N° 051, decepciona los documentos para formalizar el contrato.

Por lo tanto, el 12 de enero del 2021, mediante carta N° 02- 2021- MDSR/ULCP/CVL; el jefe de la unidad logística y control patrimonial, comunica al proveedor adjudicado algunas observaciones existentes en los documentos presentados y notifico subsanar para el perfeccionamiento del contrato, lo cual se otorgó un plazo de 3 días hábiles siguientes de lo decepcionado la notificación en mérito al Art, 141 del reglamento de la ley de contrataciones del estado.

Con la fecha 15 de enero del 2021 mediante la carta N°02- 2021- CVRS subsanó los requisitos de contrato para perfeccionar ante la ENTIDAD, ingresando la carta arriba mencionada por mesa de partes mediante registro N° 108 y recepcionado en la unidad logística y control patrimonial con registro N° 083.

En cuanto al pago la Entidad se obliga a pagar la contraprestación al Contratista mediante valorizaciones mensuales (avances), según corresponda se obliga a pagar el saldo de la liquidación mediante un plazo de 15 días luego de haber realizado las valorizaciones.

En caso de un retraso de pago de valorizaciones la Entidad y el Contratista, tienen derecho al reconocimiento de intereses legales, de conformidad con el artículo 39 de la Ley de Contrataciones del Estado y los Artículos 1244, 1245, 1246 del Código Civil.

Prolongado por un plazo de ejecución de la obra de 360 días calendarios, el mismo que se computa desde el día siguiente de cumplidas las condiciones previstas en el artículo 179 del reglamento.

Asimismo la Municipalidad Distrital de San Rafael en cumplimiento de inversiones públicas de la mano con el Gobierno Central y el Ministerio de Transportes y Comunicaciones, cuya finalidad es beneficiar a la población y fomentar el desarrollo de su jurisdicción, determinó mediante un concurso público la supervisión y consultoría de la obra "Construcción del camino vecinal Marayzondor - Santo Domingo - Huillaparac, distrito de San Rafael - Ambo - Huánuco" fue declarado viable el 8 de febrero del 2021 a la empresa ejecutora "Consorcio vial San Rafael".

Con fecha 18 de febrero del 2021 se decepcionó en mesa de partes la carta N° 001 - 2021- "Consorcio vial San Rafael" con registro de trámite N°322 y con fecha 18 de enero la unidad de logística y control patrimonial con registro N° 254 recepciona los documentos para la formalización de contrato.

Con fecha 22 de febrero del 2021 mediante carta N° 08-2021-MDRS/ULBP/CVL, el jefe de la unidad logística y control patrimonial comunica al proveedor adjudicado observaciones existentes en los documentos presentados y notificó al Consorcio vial San Rafael a subsanar requisitos para el perfeccionamiento del contrato, y otorgando un plazo máximo de 2 días hábiles siguientes de recepcionado la notificación en mérito a lo establecido el Art: 141 del reglamento de la ley de contrataciones del estado.

En la fecha 25 de febrero del 2021, mediante carta N° 002- 2021 Consorcio supervisor viales, subsano los requisitos para perfeccionar el contrato ante la entidad, ingresando la carta arriba mencionada por mesa de partes mediante registro N° 369 y recepcionado en la unidad logística y control patrimonial con registro N°312.

Por lo tanto, el presupuesto de la supervisión y consultoría de la obra "Construcción del camino vecinal Marayzondor - Santo Domingo - Huillaparac, distrito de San Rafael - Ambo - Huánuco" cuyo monto de contrato asciende a s/566,358.60 (Quinientos sesenta y seis mil trescientos cincuenta y ocho con 60/100 soles) que incluye todos los impuestos de Ley, lo cual comprende costo de servicio de consultoría de obra, tributos, seguros, transporte, inspecciones, pruebas y de ser el caso los costos laborales conforme a la legislación vigente.

3.2. DESCRIPCIÓN DEL ÁREA DE DESARROLLO PROFESIONAL

La Municipalidad Distrital de San Rafael a través de la Sub Gerencia de Infraestructura y Desarrollo Urbano, Rural y Catastro viene realizando y ejecutando proyectos de inversión con el fin del desarrollo de su jurisdicción uno de ellos es "Análisis de vulnerabilidades en la construcción del camino vecinal Marayzondor - Santo Domingo de Rondos - Huillaparac, Distrito De San Rafael - Ambo – Huánuco 2022" con el fin de mejorar las vías de transporte, asimismo poder beneficiar a muchos ciudadanos para el desarrollo, atendiendo las necesidades que cada día son más frecuentes así mismo reduciendo el índice de pobreza del distrito, ya que contamos con la segunda región más pobre del país.

Para lograr los objetivos anteriores, el proyecto de ciudad se formalizó conjuntamente con el Fondo del Ministerio de Transportes y Comunicaciones, que proporcionó este financiamiento a través de resolución gerencial N° 016 - 2021 DM/MDRS, cuyo informe N°621- 2021- MDRS- SIDUR/AMEC. cuya fecha es el 21 de septiembre del 2021 del subgerente de infraestructura y desarrollo urbano y rural (SIDUR) solicitando la aprobación del expediente técnico formulado de Construcción del camino vecinal Marayzondor - Santo Domingo - Huillaparac, distrito de San Rafael - Ambo - Huánuco" con código único de inversiones N°2202342; oficio N°2712- 2021- MTC/21/GMS, de fecha 8 de agosto del 2021 de Provias descentralizado del ministerio de transportes y comunicaciones, con un presupuesto que asciende a los s/ 10,491,802.92 (diez millones cuatrocientos noventa y un mil ochocientos dos con 92/100 soles), por el sistema de contratación de precios unitarios, con un plazo de ejecución de 360 días calendarios por la modalidad de contrata, siendo la entidad ejecutora la municipalidad distrital de San Rafael, a través del consorcio vial San Rafael.

En la actualidad el distrito de San Rafael no cuenta con vías carrozables que abarque a todos los pueblos del distrito, por el momento el transporte de los productos se realiza cargando uno mismo y con ayuda de sus animales de carga por las trochas que ellos mismo realizaron, cabe indicar que así no pueden transportar de manera eficaz sus productos los cuales vienen trayendo pobreza, lo cual es de suma urgencia terminar el proyecto y traer beneficio en favor de la población.

3.2.1. MISIÓN

El consorcio supervisor viales tiene como misión promover y garantizar una buena ejecución de obra en el desarrollo mediante inversiones pública, para beneficio de su población en el Marco de la Modernización Vial.

3.2.2. **VISIÓN**

El consorcio supervisor viales tiene como visión que en la comunidad de Marayzondor - Santo Domingo - Huillaparac de territorio andino impulse el desarrollo tanto humano como económico, en base de nuestra biodiversidad de productos y los intercambios culturales y turismo.

3.2.3. ACTIVIDADES REALIZADAS

Las actividades realizadas como parte de esta tarea son:

3.2.4. TRABAJO EN CAMPO

Visitas a Obra: Se realizó semanalmente y con un equipo integrado conformado por:

Supervisión, supervisa las obras de construcción, teniendo en cuenta los aspectos técnicos, económicos y ambientales, y verifica su ejecución de acuerdo con los planos, bases de licitación y demás documentos contractuales hasta la finalización de la obra en la empresa. Algunos de ellos están detallados.

- Seguridad, todas las precauciones de seguridad se cumplen continuamente desde el inicio del trabajo hasta la aprobación, incluidas las interrupciones por cualquier motivo.
- Inspección de materiales y mano de obra, El trabajo mal realizado debe ser corregido y reemplazado por otros bajo la responsabilidad del contratista.
- Trabajos de realización, los contratistas utilizan la documentación de aprobación de ATS para anunciar el inicio del trabajo en cada parte o sección con 24 horas de anticipación.
- vista fotográfico, durante las visitas de verificación del trabajo realizado, se toman fotografías con el fin de obtener tiempo y evidencia detallada del trabajo realizado y el puesto, de modo que se adjuntan a los informes mensuales presentados a la unidad correspondiente en los resultados.

3.2.5. TRABAJOS EN GABINETE

Las siguientes labores fueron supervisadas por la Sub Gerencia de Infraestructura y Desarrollo Urbano, Rural y Catastro de la Municipalidad Distrital de San Rafael y la entidad ganadora Consorcio Vial San Rafael.

- Revisión de Expediente Técnico Reformulado de la Obra, En la etapa de ejecución del trabajo, se verifica el rendimiento de documentos técnicos complejos, en este caso el proyecto. "Construcción del camino vecinal Marayzondor Santo Domingo Huillaparac, distrito de San Rafael Ambo Huánuco"
- Ejercer el control administrativo y financiero de las obras, En la etapa de ejecución del trabajo, se verifica el rendimiento de documentos técnicos complejos, en este caso el proyecto.
- Apoyo en la elaboración de informes, cartas y demás documentos con cargo a la Obra, Tras consultar con la persona responsable del contrato de construcción, se prepararon informes técnicos sobre prórrogas, adiciones y modificaciones del contrato.

- Apoyen la realización de pagos, adelantos, las cantidades aprobadas y medidas, se realizan a través de valorizaciones mensuales al consorcio vial San Rafael y la entidad supervisora consorcio supervisor viales.
- Estudio de la mezcla y obtención de la fórmula de trabajo, Tan pronto como el supervisor dé su consentimiento a través del estudio de la mezcla preparada, solo se puede cambiar en el curso del trabajo, si hay una desviación en uno de los componentes en cuestión. El consultor desarrollará una fórmula de trabajo que se presentará a la autoridad supervisora para su aprobación.
- Plan de emergencia sanitaria COVID 19, Un documento que contenga las medidas adoptadas para controlar el riesgo de contraer COVID-19 en el lugar de trabajo, incluidas las medidas y responsabilidades. Esto generalmente se hace en consulta con la compañía y el regulador de cumplimiento, de acuerdo con las disposiciones del plan de atención médica de emergencia.
- Contingencias de salubridad, deben estar sujetas a la responsabilidad del contratista contra las mordeduras picaduras y la mayor disposición de ejercer los mecanismos de salud como el aprovisionamiento de sueros antiofídicos y antídotos.

3.2.6. TRABAJO EN EJECUCIÓN DE OBRA

La ejecución de obra durante el periodo de actividades del proyecto es:

- Zona de desvíos y caminos de servicio, verificación de los desvíos se deben usar de forma permanente barreras, conos, postes debidamente señalizados, lo cual pueda permitir la descongestión de vehículos.
- Rehabilitación de áreas con derecho a vía, si el supervisor analiza dónde encontrar el material necesario para rellenar la plataforma, siempre sin daños ambientales, la fuente de este

material puede ser dejada por deslizamientos de tierra o el área de suministro de material.

- Excavaciones de las vías carrozables, deben ser monitoreados e implementados de manera coordinada con la descarga del proyecto, tales como alcantarillado, aguas residuales, inscripciones de canalones y diseño de filtros, y se debe controlar el buen funcionamiento del drenaje y controlar los fenómenos de corrosión e inestabilidad.
- Ensanche o modificación del alineamiento de plataformas existentes, debe ser controlado asegurando la protección del tránsito y la superficie, evitando la contaminación de materiales requeridos por otros materiales como arcilla, materiales orgánicos o vegetales.
- Manejo del agua superficial, en cuanto se efectuando las excavaciones deberá estar el supervisor para lo cual verificar si se está realizando de la mejor forma para que no presenten hundimientos, depresiones busca no alterar los cursos aguas superficiales lo cual se debe reducir la distancia que debe de recorrer y reducir la velocidad del agua.
- Campamentos de obra, Se crea bajo el control del embalaje de un almacén temporal de trabajo en lugares destinados a almacenes y servicios de limpieza, donde el contratista ofrece su puesto y está aprobado por la autoridad supervisora, y sus requisitos corresponden a los requisitos del plan de gestión ambiental, sanitaria, de agua y alcantarillado.
- Manejo ambiental, mantenerse supervisado bajo el especialista ambiental, lo cual deberá verificar las áreas afectadas durante los trabajos como son: DME, canteras predios afectados, campamentos, patio de máquinas entre otros que sufran daños involuntarios para posteriormente proceder al sembrado de vegetación sobre esta superficie, esta vegetación será acorde a las condiciones climáticas, sociales y en general naturales de la

zona para que de esta forma pueda guardar armonía con el entorno.

CAPÍTULO IV

DESARROLLO DE EXPERIENCIA LABORAL

4.1. IDENTIFICACIÓN DE LA SITUACIÓN PROBLEMÁTICA

4.1.1. CARACTERÍSTICAS GENERALES


La determinación de prioridades de inversión de infraestructura vial en la provincia de Ambo se realizó a través de los Planes Viales Provinciales Participativos (PVPP), donde participan los alcaldes, usuarios de la comunidad y la sociedad civil; estos planes son aprobados por el Consejo Directivo del Instituto Vial Provincial (órgano integrado por los alcaldes de la provincia) y por acuerdo de Consejo de la Municipalidad Provincial.

Ubicación del proyecto:

La carretera en estudio se ubica en el centro poblado de Marayzondor, distrito de San Rafael, provincia de Ambo, departamento de Huánuco.

Figura 2

Ubicación regional de Huánuco – provincia de Ambo – distrito San Rafae.I

Nota: Ubicación regional de Huánuco – provincia de Ambo – distrito San Rafael

Fuente: Ubicación en el mapa de Perú-MTC.

Distrito de San Rafael

Tabla 6

Localización San Rafael

Local	lización
Departamento/Región:	Huánuco
Provincia:	Ambo
Distrito:	San Rafael
Región Geográfica:	Andina
Código de Ubigeo	100207
Latitud	10°20'16"
Longitud	76°10'56"
Altitud	2709 msnm

Nota. Ubicación de lugar del proyecto.

Superficie

Es el distrito más grande de la provincia, con una superficie de 443,63 kilómetros cuadrados, representando el 28,06% de la participación regional de la provincia de Ambo y el 1,20% de la participación regional de la región Huánuco. Cabe señalar que el relieve es muy fragmentario y sólo una parte del territorio de la comarca se utiliza como suelo agrícola, una décima parte del cual es tierra yerma con pastos neutros.

Límites

El distrito de San Rafael limita:

- Por el norte, con el distrito de Ambo.
- Por el sur, con los distritos de Pallanchacra y Huariaca (Provincia de Paco.
- Por el oeste, con el distrito de Panao (Provincia de Pachitea)
- Por el este, con el distrito de Huacár y San Francisco.

Acceso al proyecto

Desde la capital de la república a través de la carretera central asfaltada hasta llegar a la ciudad de Huánuco (420 km aprox) con un viaje de 9 horas aprox.

De la ciudad de Huánuco, hasta el inicio del tramo (00+000) ubicado en la localidad de Marayzondo, en la siguiente tabla se muestra el acceso desde la ciudad de Lima al inicio del tramo.

Tabla 7

Acceso al lugar del proyecto

DE	Α	TIEMPO	MEDIO DE TRANSPORTE	TIPO DE TRANSPORTE	COSTO S/.
Lima	Huánuco	9 horas	Bus	Terrestre	60
Huánuco	Marayzondor	1h 15 min.	Auto	Terrestre	15

Nota. Vía de acceso a lugar del proyecto.

Descripción del proyecto

El proyecto tiene como objetivo la construcción de la plataforma de la carretera de 16.752 km con un ancho de calzada de 4.50 m a nivel de afirmado con un espesor e=20cm, con una pendiente longitudinal máxima de 12% y demás características que se detallan en el diseño geométrico.

Se precisa en el expediente técnico que el camino vecinal en estudio consta de dos tramos, las coordenadas de inicio y fin de los tramos son los siguientes:

Tabla 8

Coordenadas UTM de los tramos

TRAMOS	DESCRIPCIÓN	PROGRESIVA	NORTE	ESTE
TRAMO 1	INICIO	km 0+000	8860372.415	371622.421
	FIN	km 7+684	8861548.249	371437.449
TRAMO 2	INICIO	km 0+000	8860637.915	370929.259
	FIN	km 9+068	8860624.782	367454.354

Nota. Tramo de inicio y fin del proyecto que define las distancias en kilómetros.

Tabla 9

Coordenadas UTM de fuentes de agua

TRAMOS	FUENTE DE AGUA	DESCRIPCIÓN	NORTE	ESTE
TRAMO 1	Fuente de agua Nº 1	km 04+560	8861069.82	370435.61
	Fuente de agua Nº 2	km 04+783	8861218.30	370518.15
TRAMO 2	Fuente de agua Nº 3	km 07+216	8861539.21	368737.83
	Fuente de agua Nº 4	km 07+556	8861423.12	367026.59

Nota. Ubicación de las fuentes de agua de los dos tramos para la ejecución.

Cantera para Afirmado

Tabla 10

Ubicación de las canteras para afirmado

	TRAMO II: Marayzondo Huillaparac					
CANTERA	PROGRESIV A	LADO	ACCESO	TIPO DE MATERIAL EXTRAER	USO DE MATERIAL	
Cantera de cerro 01	km 0+650	Derecho	Aledaño al eje de la vía	Granular (suelo)	Afirmado	
Cantera de cerro 02	km 4+760	Derecho	Aledaño al eje de la vía	Granular (suelo)	Afirmado	

Nota. Se tiene la ubicación de cantera en el Tramo II de Marayzondor Huillaparac, para el afirmado

Cantera para Agregado

Tabla 11

Ubicación de las canteras de agregados

Tramo 1 Maroyzondor Santo Domingo de Rondos				
Cantera	Progresiva	Acceso	Tipo de Material extraído	Uso de Material
Cantera Agregado 1	Se encuentra a 07+570 km del punto de inicio del tramo 1	Aledaño al eje de la vía	Canteras de agregados	Concreto de arte

Nota. Se tiene la ubicación de cantera en el Tramo 1 Maroyzondor Santo Domingo de Rondos, para el afirmado

4.2. ACTIVIDADES PROFESIONALES REALIZADAS

4.2.1. DESCRIPCIÓN DE LA VÍA EXISTENTE

La ruta para conectarse a las principales ciudades del condado de San Rafael corre el riesgo de aumentar la pérdida de capacidad de servicio debido a una intervención insuficiente, por lo que debe mejorarse y construirse en consecuencia para satisfacer adecuadamente la demanda de los consumidores.

Actualmente, en la ruta prevista hay transporte en el estado de acémilas, que se deteriora durante los períodos lluviosos. Esto afecta la productividad de la región, disminuye drásticamente y conduce a la

aparición de una gran cantidad de intermediarios que perjudican a los productores de la región, que reciben precios muy bajos por la venta de sus animales y productos agrícolas. Esto reduce directamente los ingresos de los productores, haciendo que las inversiones sean poco atractivas en el acceso a los servicios sociales, que también se ven significativamente afectados por las dificultades de acceso a instituciones superiores a la organización médica en el caso de la atención médica.

En el tramo de la carretera Marayzondor - Santo Domingo de Rondos - Huillpac (16+752 Km) cruza diversos centros poblados y caseríos los cuales serán beneficiados directos de este proyecto.

4.2.2. ESTUDIO DE TRÁFICO

4.2.2.1. ESTUDIO DE TRÁFICO

La metodología de trabajo de campo desarrollada en este estudio se basa en las observaciones realizadas durante el desarrollo de los principales gráficos de campo y en las recomendaciones del "Manual de Investigación del Tráfico", en el que el trabajo consiste en el número de movimientos automatizados dentro del alcance de las actividades a realizar para el normal desarrollo del estudio:

- Etapa de planificación.
- Etapa de organización
- Etapa de ejecución
- Etapa de procesamiento

Con el fin de elaborar un censo que permita conocer el volumen de tráfico que soporta la carretera y su composición, se han establecido puntos de control, ya que cada tramo tiene características homogéneas en la intensidad y composición del tráfico de automóviles; No hay una calle específica desde el comienzo de la ciudad Marayzondor hasta la localidad de Santo Domingo de Rondos y Huillaparac; existiendo una demanda actual insatisfecha de un camino vecinal mejorado.

Para determinar el número de tráfico, el excedente del fabricante, la necesidad de reasentar a las personas en las áreas que describimos en detalle en los anexos proporcionados; Se tendrá en cuenta el origen del destino y el número de vehículos. Para calcular vehículos, hay dos estaciones ubicadas en E-1 (km 00+000) y E-2 (km 07 + 600) registra el conteo de control de tráfico de ruta Chasqui - Santo Domingo de Rondos y de la ruta Marayzondor - Santo Domingo de Rondos hasta la localidad aledañas y viceversa.

Se prepara constantemente una lista de tareas, clasificación, investigación y propósito de origen; 24/7 del 18 de febrero de 2019 al domingo 24 de febrero de 2019, para solicitudes de información de origen y destino consistentes en entrevistas con transeúntes, pasajeros y conductores que se encontraban en la carretera, además de la coordinación con los municipios y comunidades existentes, las siguientes unidades viales serán asignadas a las pruebas de tráfico durante el censo de sección:

Vías Terrestres: Autos, camionetas, minivan (camioneta combi), motocar, motocicletas y camiones de 2 ejes.

4.2.2.2. CONTEO Y CLASIFICACIÓN VEHICULAR

Para el conteo vehicular se ubicaron 2 estaciones las cuales se ubican en las progresivas E-1 (km 00+000) y E-2 (km 07+600), registra el conteo de tráfico de la ruta Chasqui - Santo Domingo de Rondos y de la Ruta Marayzondor - Santo Domingo de Rondos, hasta la localidad aledañas y viceversa. Se prepara constantemente una lista de tareas, clasificación, investigación y propósito de origen; 24/7 del 18 de febrero de 2019 al domingo 24 de febrero de 2019.

Resumen de estudio de tráfico

Dado que el diseño del área de la carretera depende tanto del tráfico actual como del aumento del tráfico que se utilizará en la carretera, es necesario crear previsiones de tráfico futuro. Primero, debe determinar el período de pronóstico de tráfico; es una función de

la vida del área de la carretera, así como la tasa de crecimiento, que son una función de la tasa del crecimiento demográfico (población) y macroeconómica (PBI).

4.2.2.3. VIDA ÚTIL DE PAVIMENTO

La antigüedad de construcción y mejora de la carretera objeto de estudio es de 10 años, contados desde la fecha de apertura de la carretera, por otro lado, dado que la carretera lleva activa desde 2020, y el estudio de tráfico se realizó en febrero de 2019 y el número de años para llegar a la vida en la superficie de la carretera es de 10 años.

Volumen de tránsito proyectado

El tráfico futuro (TF) es el resultado del tráfico normal (TO) y el aumento del tráfico (IT); el periodo final de la vida útil del pavimento de la carretera: TF= TO + IT

Tránsito normal

Corresponde al tráfico que tiene lugar a lo largo de la ruta, se explora en un estacionamiento sin proyecto y no cambia en la situación con el proyecto.

Tránsito atraído

La atracción de tráfico (TAT) consistirá en vehículos que no cambian el propósito o el tipo de viaje, sino que eligen una ruta que se estimula principalmente mejorando el tiempo y la distancia del viaje.

Dado que las secciones son bastante homogéneas, las unidades de pasajeros o carga no se aumentarán hasta que se restaure y/o mejore la carretera.

4.2.2.4. CRECIMIENTO NORMAL DE TRÁNSITO

Un aumento normal en el tráfico es un aumento en el volumen de tráfico debido a un aumento natural en el uso de vehículos. Esto

se cuantifica por la tasa de crecimiento del vehículo durante el período de diseño 'n' años utilizando la siguiente fórmula:

Tn= To
$$(1+r)^{n-1}$$

Tn= Tránsito proyectado al año en vehículos/día.

To= Tránsito normal (año base) en vehículos/día.

n = Año futuro de proyección.

r= Tasa anual de crecimiento del tránsito.

Tránsito generado

El tráfico generado consiste, en un tráfico que no estaba presente en la carretera en un estado sin proyecto y aparece como resultado directo de la implementación del proyecto, principalmente debido al bajo costo del transporte por carretera.

 Tabla 12

 Estimación de tráfico generado por tipo de Proyecto

Tipo de Intervención	% de tráfico Normal		
Proyecto de rehabilitación	10%		
Proyecto de mejoramiento	15%		
Nota. En nuestro caso es el 10% del tráfico	normal, por tratarse de un proyecto de		

Tránsito desviado

construcción.

Distrae la atención del tráfico, que en ausencia de un proyecto utiliza una ruta diferente para moverse, pero después de la implementación del proyecto utilizará parte o forma de la carretera, la rehabilitará o mejorará, pero conservará su origen y propósito.

Tasas de crecimiento

La tasa de crecimiento varía según el tipo de vehículo, y está determinado por la cadena de propulsión histórica, basada en investigaciones previas del departamento en investigación u otros métodos de naturaleza similar. En esta sección, el Ministerio de Transportes y Comunicaciones no ha encontrado ninguna información histórica o estadística sobre el tráfico que pueda ser útil.

Una metodología alternativa o complementaria en ausencia de información histórica es el análisis flexible de variables macroeconómicas (demográficas, PIB, etc.) relevantes para los impactos del proyecto. En cuanto al tipo de tráfico, a continuación, se muestra las tasas de crecimiento y PBI para la región de Huánuco.

- 0.4% tasa de crecimiento departamento Huánuco, fuente INEI.
- 1.20% indica el PBI de la región Huánuco.

Resumen del tránsito actual se tiene:

Estación Santo Domingo de Rondos.

Tabla 13 *Estación E-1*

IMDA TRÁNSITO ACTUAL				
IMDA - ACTUAL	LIGEROS	PESADOS		
59	45	14		
100%	76.00%	24.00%		

Nota. Registro de tránsito de la Estación E-1.

Tabla 14 *Estación E-2*

IMDA TRÁNSITO ACTUAL						
IMDA - ACTUAL	IMDA - ACTUAL LIGEROS PESADOS					
53	53 41 12					
100%	77.00%	23.00%				

Nota. Registro de tránsito de la Estación E-2.

Luego de aplicar las fórmulas indicadas, se obtiene el siguiente:

Tabla 15 *Estación E-1*

IMDA TRÁNSITO AÑO 2029				
IMDA - PROYECTADO	LIGEROS	PESADOS		
88	67	21		
100%	76.15%	23.85%		

Nota. Registro de tránsito del año 2019 de la Estación E-1.

Tabla 16

Estación E-2

IMDA TRÁNSITO AÑO 2029				
IMDA - PROYECTADO LIGEROS PESADOS				
79	61	18		
100%	77.20%	22.80%		

Nota. Registro de tránsito del año 2019 de la Estación E-2.

4.2.3. ESTUDIO DE TOPOGRAFÍA, TRAZO Y DISEÑO VIAL

4.2.3.1. GEORREFERENCIACIÓN - POLIGONAL BÁSICA

Como referencia geográfica, HCO3 La Estación de Inspección Permanente (ERP) fue adoptada en el techo del segundo piso del Gobierno Regional de Huánuco en la ciudad de Huánuco como punto de partida. Forma parte de la Red Geodésica Nacional Geocentral (REGGEN), fundada por el Instituto Geográfico Nacional.

4.2.3.2. TRABAJOS DE CAMPO

Los estudios sobre el terreno eran una serie de observaciones que debían hacerse directamente; a fin de realizar las mediciones de diseño necesarias de conformidad con los cálculos y estudios sobre el terreno, y se consideraban parte integrante de las observaciones que debían hacerse inmediatamente después de terminada la observación.

4.2.3.3. CONTROL HORIZONTAL

Para el control horizontal se utiliza un método estático, que consiste en colocar el dispositivo GPS (BASE) en el punto donde se conoce el dispositivo con las coordenadas del punto de la estación GPS: Huánuco "HCO 01", línea "0", que pertenece a la red geodésica nacional del Instituto Geográfico Nacional del Perú.

Este proyecto utilizó dos receptores diferenciales L1/L2 con doble frecuencia y precisión milimétrica de la marca TOPCON Modelo GR5 para realizar simultáneamente mediciones y mejorar la arquitectura de la red geodésica.

Los receptores GPS diferenciales reciben simultáneamente ondas de radio emitidas por 2×2 satélites por par de puntos de lectura; los parámetros de medición utilizados para este trabajo son los siguientes:

Tabla 17Parámetros de medición utilizados

Sistema	Estático diferencial GPS
Equipos	02 GPS Rover
Frecuencia	L1, L2
Tiempo	03:00 horas continuas, de toma de información por punto como promedio
N° de Satélites	4satélitescomo mínimo, 3 para la posición 1 para la altura
Intervalo de grabación	Cada 5 segundos
Máscara de elevación	10 grados
Dilución	PDOP 1.973-2.792

Nota. Registro de la medición de parámetros de puntos geodésicos.

Figura 3

Medición del área de botadero

Nota. Replanteo del área de botadero el tramo I.

4.2.3.4. CONTROL VERTICAL

Para el control vertical, la corrección (altura) fue utilizada por el modelo de onda EGM2008.

Este modelo geográfico EGM2008 es uno de los modelos terrestres que consiste en coeficientes armónicos esféricos para completar el resultado y ordenar 360°. Dicha decisión incluirá:

- 1. Una combinación de solución a grado y el orden 70.
- Un bloque diagonal solución de grado 71 a 359.
- la solución de cuadratura en grado 360.

Monumentación de red Geodésica

Se procedió monumental los hitos conforme a lo especificado, se utilizó concreto fc=175 kg/cm2 en todos los casos, se monumento seis hitos (3 pares) de concreto de 19cm de diámetro y 40 cm de profundidad, con sus respectivas muescas de acero incrustadas en el centro de las mismas.

Una vez monumentados los hitos en campo se procedió a estacionar sobre ellos los equipos geodésicos GPS, de doble frecuencia para proceder a la traslación de coordenadas (N, E, H). Desde la estación de control permanente de Huánuco, de orden 0 del IGN, ubicada en el Gobierno Regional de Huánuco.

Descripción de los trabajos de topografía

Para tomar datos del eje de la vía se utilizó:

- Estación total marca Leica.
- Dos primas.
- Un GPS.
- Cuatro radios comunicadores.
- Eclímetro.
- Wincha.
- Nivel topógrafo.

Figura 4

Trazo y replanteo de la carretera

Nota. Dejando estacas y pintado de progresivas cada 10 m en tangentes y cada 5 m en curvas, dependiendo las variaciones del terreno; en las estacas dejadas a lo largo el seccionamiento del terreno para lo cual se hizo uso del estación total y flexómetro.

Se efectuaron levantamientos topográficos en sectores que requirieron mayor detalle, como son: canteras, depósitos de material excedente, zonas urbanas, sectores críticos; la información obtenida por la estación total fue descargada al equipo de cómputo con lo cual se consiguió coordenadas UTM WGS-84 y cotas relativas.

Esta información y los datos de la estación total fueron ingresados al software de diseño vial AIDC con lo cual se trabajó lo concerniente al trazo y diseño geométrico.

4.2.3.5. TRAZO

El relieve del topográfico y el trazo incluye las siguientes partes: horizontal, lateral, longitudinal y transversal, que se procesan:

Alineamiento Horizontal

La orientación horizontal de la carretera a construir depende del mayor cumplimiento posible de las normas de planificación de 2018.

En el camino, se ha desarrollado completamente en la colina, por lo que las pendientes tienen curvas horizontales, de vuelta y cerradas, especialmente en la intersección con las quebradas. Tener más curvas hace que los rectilíneos sean muy cortos.

El alineamiento horizontal se ha aplicado de conformidad con los

requisitos del mandato:

Tramos en tangentes: estacados cada 20 metros.

Tramos curvos: estacados cada 10 metros.

Tramos en curvas de volteo: estacados cada 5 metros.

En lo que respecta a los puntos de referencia, están bien

establecidos en el mandato.

Perfil longitudinal y diseño de la subrasante

En toda la parcela, se intentó limitar los movimientos de tierra,

teniendo en cuenta solo los cortes y rellenos necesarios para ajustar

y alinear la plataforma planificada.

Este proyecto supone que el nuevo chasis tiene una pendiente

natural máxima del 10% y una pendiente máxima excepcional del 12%

en algunos tramos.

En resumen, se puede decir que la infraestructura de la dirección

vertical prevista en el proyecto se trata al mismo nivel que el suelo,

por lo que se minimizan los trabajos de excavación.

Las capas subrasante y perfil longitudinal se trazan en las

siguientes escalas:

Horizontal: 1/2000.

Vertical: 1/200.

Nivelación

Para alinear el eje de elevación, cada 500 metros se utiliza el

método de nivelación cerrado, las marcas y el Bench Marks (BM's) se

identifican debidamente; se colocan en puntos correctamente fijados

fuera del suelo y se dirigen a puntos fijos. El método de la ecuación

BM's es un viaje de ida y vuelta donde los cambios están en lugares

fijos y confiables. La precisión de la clasificación es inferior a 0005 m;

57

los BM's se clasifican para ejes de corte utilizando dispositivos nominales.

El eje está alineado por una brigada compuesta por:

- Un topógrafo nivelador.
- Dos ayudantes.

El equipo utilizado fue:

- Un nivel automático marca Leica SPRINTER 250M.
- Mira de aluminio con código de barras Sprinter.
- Accesorios varios (fierros, combas, clavos, etc).

Figura 5

Colocación de afirmado

Nota. Se tiene la colocación del material de afirmado en la calzada H=0.20cm, en el tramo I.

4.2.3.6. DISEÑO GEOMÉTRICO

Los parámetros de diseño utilizados en el estudio tienen como objetivo mejorar el estado de las carreteras propuestas, que contienen un mínimo de líneas radiales y líneas de sinuosos, lo que conduce a una disminución de la velocidad de movimiento.

Normas de Diseño

Los estándares de ingeniería vial se rigen por la Guía de diseño vial MTC DG-2018.

Los consultores se esfuerzan por llevar a cabo un grado de diseño apropiado de acuerdo con la topografía y los aspectos visuales del sitio para lograr los más altos estándares de seguridad, comodidad, fluidez y eficiencia.

Clasificación de la Carretera

De acuerdo con los principios del diseño de calles, una ruta se puede clasificar según su función, condiciones de búsqueda y orografía.

Derecho de vía

Según constancia de la Municipalidad Distrital de San Rafael, no se puede definir el derecho de vía de la carretera.

Velocidad de Diseño

La velocidad directriz determina otros parámetros de ingeniería de la pista, como radio mínimo, escala, altura, bemas, pendiente, etc.

La elección de la velocidad de conversión depende del tamaño futuro o la clase de carretera, la intensidad del tráfico y difiere de la topografía del terreno, servicios para garantizar la seguridad ambiental y del tráfico. Disponibilidad (control de acceso), disponibilidad de recursos económicos y opciones de financiamiento, todas las características de ingeniería de una vía están determinadas por la velocidad direccional, cuya decisión está íntimamente relacionada con el costo de construcción de cada vía. Para altas velocidades de dirección, el diseño de la carretera es obligatorio; Entre otras cosas, el uso de anchos más grandes de la plataforma y la rotación de los radios en las curvas horizontales, lo que provoca un aumento en el volumen de trabajo.

Teniendo en cuenta la planificación vial, DG-2018 indica que es natural adaptar el diseño tanto como sea posible a los reflejos del terreno en todas las áreas de la orografía áspera. Conclusión: En este estudio se tuvo en cuenta una velocidad nominal de 30 km/h.

a. Distancia de Visibilidad

Esta es una longitud continua frente a la carretera que es visible para el conductor del automóvil de tal manera que puede realizar varias maniobras que se le pide que realice o realice de manera segura; Informe del proyecto 3 esquinas visibles:

- Visibilidad de parada.
- Visibilidad de paso o adelantamiento.
- visibilidad de cruce con otra vía.

Los dos primeros se refieren al diseño de carreteras abiertas y se discuten en esta sección, teniendo en cuenta la dirección simple y horizontal de una sola pendiente.

b. Distancia de visibilidad de parada

En todos los puntos del recorrido, la distancia de visión deberá ser igual o inferior a la distancia de frenado. La tabla muestra las distancias de frenado óptico, dependiendo de la velocidad y la pendiente de la estructura.

Tabla 18

Distancia de Visibilidad de parada (metros), en porcentaje 0%

Velocidad de diseño	Distancia de percepción de reacción	Distancia durante el frenado a nivel	Distancia de vi	sibilidad de parada		
км/н	M	M	Calculada M	Redondeada M		
20	13.9	4.6	18.5	20		
30	30.9	10.3	31.2	35		
40	27.8	18.4	46.2	50		
50	34.8	28.7	3.5	65		
60	41.7	41.3	83	85		
70	48.7	56.2	104.9	105		
80	55.6	73.4	129	130		
90	62.6	92.9	155.5	160		
100	69.5	114.7	184.2	185		
110	76.5	138.8	215.3	220		
120	93.4	165.2	248.6	250		
130	90.4	193.8	284.2	285		

Nota. Distancia adecuada y visible de parada la velocidad de diseño es de 30km/h, cumpliendo con el manual de carretera diseño geométrico.

Fuente: Manual de carretera: diseño geométrico (MTC) DG-2018.

 Tabla 19

 Distancia de visibilidad de parada con pendiente (Metro)

Velocidad	Pendie	nte nula o en	bajada	Pen	diente en sul	bida
de diseño (km/h)	3%	6%	9%	3%	6%	9%
20	20	20	20	19	18	18
30	35	35	35	31	30	29
40	50	50	53	45	44	43
50	66	70	74	61	59	58
60	87	92	97	80	77	75
70	110	116	124	100	97	93
80	136	144	154	123	118	114
90	164	174	187	148	141	136
100	194	207	223	174	167	160
110	227	243	262	203	194	186
120	283	293	304	234	223	214
130	310	338	375	267	252	238

Nota. Para este estudio, se tuvieron en cuenta los parámetros de las paradas de observación en función de la inclinación y la velocidad de diseño de 30 km / h. Fuente: Manual de carretera: diseño geométrico (MTC) DG-2018.

Visión transitoria o excesiva

La distancia visual debe tenerse en cuenta en carreteras de dos carriles con tráfico actual después de adelantar en el carril contrario.

La distancia de visualización es un factor de seguridad para el usuario porque deja de ver frenadas o adelantamientos.

Es cierto que en ambos casos es deseable tener la visibilidad necesaria, pero dado el terreno específico de la zona atravesada por la carretera.

Por lo tanto, el estudio integra un sistema eficaz de señales preventivas en una posición estratégica.

Para ver el corredor, además de las señales anteriores, hay lugares disponibles para cualquier necesidad.

Conclusión: En este estudio, no se tiene en cuenta la distancia de la visibilidad de la parada o del paso. ya que se trata de un solo conductor.

4.2.3.7. ALINEAMIENTO HORIZONTAL

a. Curvas Horizontales

El radio mínimo de curvatura es el valor límite especificado sobre la base del valor máximo sin posibilidad y el coeficiente máximo de fricción (. 302.02 del Manual Técnico DG-2014) para la velocidad y posición de movimiento.

$$R_{min} = \frac{V2}{127(0.01 \, e_{max} + f_{max})}$$

Teniendo en cuenta la pendiente máxima normal del 6%, el coeficiente de fricción de 0,17 del manual técnico de carreteras DG-2018 y la velocidad de giro de 30 km / h; El valor mínimo del radio del círculo es de 25 m.

Muchos arcos con un radio amplio o un radio más pequeño también se utilizan en el diseño.

Tabla 20Posibles curvas de radio amplio o el radio mínimo

Ubicación de la vía	Velocidad del diseño	Máx (%)	f Máx	Radio calculado (m)	Radio redondeado (m)
	30	12	0.17	24.4	25
	40	12	0.17	43.4	45
	50	12	0.16	70.3	70
	60	12	0.15	105	105
Área rural	70	12	0.14	148.4	150
(accidentado o	o 80 12	12	0.14	193.8	195
escarpado)	ado) 90 12	0.13	255.1	255	
	100	12	0.12	328.1	330
	110	12	0.11	414.2	415
	120	12	0.09	539.9	540
	130	12	0.08	665.4	665

Nota. Para esta prueba, se tuvo en cuenta un radio no inferior a 25 m, así como un radio mínimo excepcional en curvas de 12 m de longitud.

Fuente: Manual de carretera: diseño geométrico (MTC) DG-2018.

b. Curvas Compuestas

Se aplican curvas compuestas debido a la topografía del terreno, clasificación de la vía que es tercera clase y al costo del proyecto. Teniendo en cuenta las condiciones del manual DG-2018 del MTC.

Curvas contiguas en una dirección

Para esta prueba, este tipo de curva debe tenerse en cuenta en algunas plantas de guisantes cubiertas con planos. Esta es la solución correcta para conectar dos curvas cerca una de la otra. Para aplicar esta configuración, uno de los dos círculos debe estar dentro del otro, no uno concéntrico. Manténgase en contacto entre los parámetros y el radio grabado.

Figura 6

Configuraciones recomendables

Nota. en el caso del presente estudio está dentro de los parámetros establecidos:(R1)/3 < (R)2; R1 = 12 y R2 = 13.


Fuente: Manual de carretera: diseño geométrico (MTC) DG-2018.

c. Curvas de Vuelta

La verdadera curva está definida por dos arcos correspondientes al radio interior "RI" y al radio exterior "RE". Posibles valores de RI y RE; dependiendo del tipo de vehículo previsto, se presenta en la tabla DG-2018, que están en relación al tipo de vehículo y trayectoria (120°, 150° y 180°), ya que el manual DG-2018 del MTC no, menciona parámetros de curvas mínimas de acuerdo al ancho de calzada.

Figura 7

Curva de Vuelta

Nota. Curvas mínimas del ancho de calzadas. Fuente: Manual de carretera: diseño geométrico (MTC) DG-2018.

Tabla 21Ómnibus de tres ejes (B3-1) radios máximos, mínimos y ángulos

Ángulo de trayectoria	R máx. Exterior de vehículo /E)	R min. Interior de rueda (I)	Ángulo máximo de dirección
30°	14.66m	10.80m	19.1°
60°	14.95m	9.67m	27.2°
90°	15.07m	9.20m	30.7°
120°	15.12m	9.00m	30.2°
150°	15.15m	8.91m	32.9°
180°	15.15m	8.87m	33.2°

Nota, teniendo en consideración lo indicado en el manual de carretera se ha considerado el radio mínimo interior en curvas de vuelta de 8.87 m y un radio exterior de 15.15 m. Fuente: Manual de carretera: diseño geométrico (MTC) DG-2018.

d. Peralte

La flexión horizontal debe amortiguarse para contrarrestar las fuerzas centrífugas.

El límite superior está determinado por muchos factores, tales como: Condiciones climáticas, terreno, región o ciudad y frecuencia de uso de camiones de bajo consumo.

 Tabla 22

 Radios mínimos y peraltes máximos para diseño de carretera

Ubicación de la vía	Velocidad de diseño	Máx (%)	f Máx	Radio calculado (m)	Radio redondeado (m)
	30	12	0.17	24.4	25
	40	12	0.17	43.4	45
	50	12	0.16	70.3	70
	60	12	0.15	105	105
	70	12	0.14	148.4	150
	80	12	0.14	193.8	195
Área rural	90	12	0.13	255.1	255
(accidenta da o	100	12	0.12	328.1	330
escarpada)	110	12	0.11	414.2	415
	120	12	0.09	539.9	540
	130	12	0.08	665.4	665

Nota. En nuestro caso usaremos un valor de peralte máximo de 12%, para obras de arte como Badanes que se encuentra en curvas, con radios de 15 m, usamos un peralte de 4%, ya que la velocidad en estos puntos disminuye considerablemente.

Fuente: Manual de carretera: diseño geométrico (MTC) DG-2018.

e. Sobre Ancho

En el caso de curvas, la máquina de construcción ocupa un ancho más amplio que en secciones rectas; Incluso para radios inferiores a 500 metros, es necesario calcular un ancho excesivo en el que se utiliza la siguiente fórmula:

$$Sa = n\left(R - \sqrt{R^2 - L^2}\right) + \frac{V}{\sqrt[10]{R}}$$

Donde:

- Sa = Sobreancho (m).
- n = Números de carriles.
- R = Radio horizontal (m).
- V = Velocidad directriz (Km/h).
- L =Longitud del eje posterior a la parte frontal del vehículo C2=7.30m.

El vehículo utilizado para calcular los sobreanchos es el camión C2.

f. Afirmados

Espesor de afirmado 20 cm.

4.2.3.8. ALINEAMIENTO VERTICAL

a. Curvas Verticales

El diseño de arcos verticales se llevó a cabo de acuerdo con el manual de carreteras para el diseño técnico de la DG-2018; Las curvas verticales se diseñarán de manera que al menos una de ellas sea visible a una distancia correspondiente a la velocidad mínima de frenado. Si la visibilidad es mayor que la distancia de viaje correspondiente. Seleccione el índice de flexión K para determinar la longitud del hilo vertical, la longitud de la curva vertical es igual a K multiplicado por el valor absoluto de la diferencia de pendiente logarítmica (A). Esta longitud está determinada por la sentencia:

L = KA

Los valores de los índices K se muestran en la tabla, para curvas convexas y en la tabla para curvas cóncavas.

Tabla 23

Valores de Índice K para el cálculo de la longitud de curva vertical convexa en carreteras de tercera clase

Velocidad de diseño	Longitud controlada po parada	r visibilidad de	Longitud controlada por visibilida de paso						
(km/h)	Distancia de visibilidad de parada	índice de curvatura K	Distancia de visibilidad de paso	índice de curvatura K					
20	20	0.6							
30	35	1.9	200	46					
40	50	3.8	270	84					
50	65	6.4	345	138					
60	85	11	410	195					
70	105	17	465	272					
80	130	26	540	338					
90	160	39	615	438					

Nota. Cálculo de la longitud de 30km/h en curva vertical convexa en carreteras de tercera clase, cumpliendo el manual de carreteras diseño geométrico.

Fuente: Manual de carretera: diseño geométrico (MTC) DG-2018.

Tabla 24

Valores de Índice K para el cálculo de la longitud de curva vertical convexa en carreteras de tercera clase

Velocidad de diseño (km/h)	Distancia de visibilidad de parada (m)	Índice de curvatura K
20	20	3
30	35	6
40	50	9
50	65	13
60	85	18
70	105	23
80	130	30
90	160	38

Nota. Para el presente estudio se utilizó todos los parámetros para una velocidad de diseño de 30 km/h de carreteras de tercera clase.

Fuente: Manual de carretera: Diseño geométrico (MTC) DG-2018.

b. Pendiente

Según las Directrices de Construcción de Carreteras DG-2018, se evita el uso de pendientes inferiores al 0,5% debido a problemas de drenaje superficial en tramos irregulares. Una tabla en la Guía de Diseño de Carreteras DG-2018 muestra que la pendiente máxima para una velocidad de 30 km / h y tipo es del 10%, dependiendo del área de estudio.

Tabla 25

Pendientes máximas (%)

Demanda Vehículo/día		Α	Autopistas >6.000			Carretera 6.000 - 4001			Carretera 4.000 - 2.001				Carretera 2.000 - 400				Carretera < 400				
Características		Pri	Primera clase		Segunda clase			Primera clase			Segunda clase			Tercera clase							
Tipo de Orografía		1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
	30km/h																			10	10
	40km/h																9	8	9	10	
	50km/h											7	7			8	9	8	8	8	
	60km/h					6	6	7	7	6	6	7	7	6	7	8	9	8	8		
	70km/h			5	5	6	6	6	7	6	6	7	7	6	6	7		7	7		
Velocidad de diseño (km/h)	80km/h	5	5	5	5	5	5	6	6	6	6	6		6	6			7	7		
	90km/h	4.5	4.5	5		5	5	6		5	5			6				6	6		
	100km/h	4.5	4.5	4.5		5	5	6		5				6							
	110km/h	4	4			4															
	120km/h	4	4			4															
	130km/h	3.5																			

Nota. Se utilizó una pendiente máxima de 10%, y una pendiente máxima excepcional de 12%. Está pendiente es en tramos cortos con descanso.

Fuente: Manual de carretera: diseño geométrico (MTC) DG-2018.

c. Coordinación entre la construcción horizontal y vertical

Para lograr seguridad, velocidad uniforme, apariencia hermosa y gestión eficiente del tráfico, las alineaciones horizontales y verticales deben coordinarse en lugar de diseñarse por separado. No es apropiado comenzar o terminar una curva horizontal en la parte superior de una curva vertical. Esta condición es particularmente peligrosa por la noche, cuando el conductor no puede ver el comienzo o el final de un giro nivelado.

Necesidad de mejorar la seguridad Al pasar de una curva horizontal a una curva vertical, la curva horizontal debe ser más ancha en ambas direcciones que la curva vertical. Para fines de multiplicación, las curvas horizontales y verticales están diseñadas para tener pendientes transversales cercanas a cero en las transiciones de los bordes.

La estructura horizontal y vertical de la pista se ajusta para permitir que los usuarios se desplacen con comodidad y seguridad, se deben cumplir las siguientes condiciones para que el proyecto se ajuste correctamente:

- Los puntos de contacto de la curva vertical que coinciden con la curva circular se sitúan en la región, en el diagrama de suelo y alejados del punto de contacto de radio infinito o de la curva de transición con sección recta.
- En áreas donde se espera hielo, la línea inclinada máxima (longitudinal, transversal o de plataforma) es igual o menor (10%). Adicionalmente se consideran tramos excepcionales con pendientes iguales a 10%, ya que la topografía no presenta las posibilidades de una variante de trazo.

d. Sección transversal

Calzada:

El diseño geométrico DG 2018 sugiere que las carreteras se pueden dimensionar como de un carril o de dos carriles si IMDA < 200.

Un ancho de vía de 4,00 m según la clasificación de la vía con una velocidad recomendada de 30 km/h cumple los requisitos definidos en el Manual de diseño de ingeniería de la DG de 2018.

Tabla 26Anchos mínimos de calzada en tangente

Demanda Vehículo/di Característic	ía		>6. Prin	pist 000 nera ase		6.0	arro 000 Segu	- 40	01	4.		- 2	era .001		2.00 Se	rrete 00 - gun	400 da	(Carre < 4 Tero cla	00 era	
Tipo de Orogr	afía	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
	30k m/h																			6	6
	40k m/h																6. 6	6. 6	6. 6	6	
	50k m/h											7. 2	7. 2			6. 6	6. 6	6. 6	6. 6	6	
	60k m/h					7. 2	7. 2	7. 2	7. 2	7. 2	7. 2	7. 2	7. 2	7. 2	7. 2	6. 6	6. 6	6. 6	6. 6		
	70k					7.	7.	7.	7.	7.	7.	7.	7.	7.	7.	6.	-	6.	6.		
Velocidad de	m/h 80k	7.	7.	2 7.	2 7.	2 7.	2 7.	2 7.	2 7.	2 7.	2 7.	2 7.	2	2 7.	2 7.	6		6 6.	6 6.		
diseño (km/h)	m/h 90k	2 7.	2 7.	2 7.	2	2 7.	2 7.	2 7.	2	2 7.	2 7.	2		2 7.	2			6 6.	6 6.		
	m/h	2	2	2		2	2	2		2	2			2				6	6		
	100k m/h	7. 2	7. 2	7. 2		7. 2	7. 2	7. 2		7. 2				7. 2							
	110k m/h	7. 2	7. 2			7. 2															
	120k	7.	7.			7.															
	m/h 130k	2 7.	2			2															
	m/h	2																			

Nota. para una velocidad de diseño de 30km/h y por ser trocha carrozable el ancho mínimo de calzada en tangente es de 4.00 m.

Fuente: Manual de carretera: diseño geométrico (MTC) DG-2018.

Tabla 27

Valores del bombeo de la calzada

	Bombeo (%)				
Tipo de superficie	Precipitación < 500 mm/año	Precipitación < 500 mm/año			
Pavimiento asfáltico y/o concreto portland	2,0	2,5			
Tratamiento superficial	2,5	2,5 – 3,0			
Afirmado	3,0 – 3,5	3,0 - 4,0			

Nota. En nuestro caso la superficie de la calzada es afirmada y según el clima imperante en la zona, el valor adoptado es de 3% por el tipo de superficie y los valores de precipitación de la zona.

e. Taludes

Los taludes de corte y relleno han sido definidos en la especialidad de geología y geotecnia.

Tabla 28

Taludes de corte

Taludes de corte H < 5.00 M				
Clases de terreno	Taludes V:H			
Roca fija	10:01			
Roca suelta	6:1 – 4:1			
Conglomerados cementados	04:01			
Suelos consolidados compactos	03:01			
Conglomerados comunes	2:1 – 1:1			
Tierra Compacta	01:01			
Tierra suelta	01:02			
Arenas sueltas	01:02			
Zonas blandas con abundante arcilla o zonas humedecidas por filtraciones	01:03			

Nota. Clases de terreno para los taludes de corte H, de acuerdo al tipo de terreno que se tiene en todo el tramo de la carretera.

Fuente: Manual de carretera: diseño geométrico (MTC) DG-2018.

Tabla 29 *Taludes de relleno*

Taludes de corte H < 5.00 M					
	Material	es	Taludes V:H		
	diversos de suelos)	compactados	1:1,5		

Nota. Para el relleno se tiene el tipo de material para los suelos compactados es de 1: 1,5. Fuente: Manual de carretera: diseño geométrico (MTC) DG-2018.

Figura 8

Colocación material de afirmado

Nota. distribución de material de afirmado para la compactación con el ancho requerido.

f. Cunetas

El departamento de hidrología y procesamiento determinó las dimensiones del surco en 0,75 m x 0,25 m.

g. Plazoletas de cruce:

Por ser de sentido único, hay un paso de peatones cada 500m.

h. Parámetros geométricos de la vía:

Los elementos de tecnología de diseño están determinados por las normas de tránsito vigentes y las pautas de diseño de velocidad.

Tabla 30

Características geométricas

Descripción	Km 00+000 - Km 17+447
Velocidad directriz	VD = 30 km/h
Ancho de calzada	4,00 m
Ancho de Bermas	Sin bermas

Nota. Descripción del diseño geométrico de la carretera de tercera clase con la velocidad directriz y ancho de la calzada.

Fuente: Manual de carretera: diseño geométrico (MTC) DG-2018.

Tabla 31

Descripción de la logística

Descripción	Km 00+000 - Km 17+447
Bombeo	3%
Radio mínimo	12 m
Peralte máximo	12%
Pendiente máxima	10%
Pendiente máxima excepcional	12%
Pendiente mínima	0.50%
Talud de relleno	1.5 H: 1V
Talud de corte	De acuerdo al tipo de material
Cuneta triangular	0.75 x 0.30

Nota. Descripción de la longitud de Km 00+000 - Km 16+752 de los dos tramos que tiene el proyecto

Fuente: Manual de carretera: diseño geométrico (MTC) DG-2018.

Longitud del camino:

La longitud total que representa el camino de construir está conformada de la siguiente manera: tramo Marayzondor - Santo Domingo de Rondos - Huillaparac, L= 16.752 km.

4.2.4. ESTUDIO DE HIDROLOGÍA E HIDRÁULICA

4.2.4.1. OBJETIVOS

El propósito del estudio hidrológico es evaluar el comportamiento hidrológico de un cuerpo de agua existente durante la construcción de un sitio dedicado para la instalación de una planta de tratamiento de aguas residuales para evaluar la importancia de las aguas residuales de la carretera y ajustar el caudal superficial asociado. Rutas sugeridas en el siguiente tramo:

Tramo: Marayzondor - Santo Domingo de Rondos - Huillaparac (L=16.752 Km)

4.2.4.2. ANÁLISIS HIDROLÓGICOS

Información hidrometeorológica

La escorrentía existente y producida por el área de estudio proviene exclusivamente de las precipitaciones pluviales caídas de la zona.

por su similitud con la zona existen tres estaciones meteorológicas que se identificó y sus características son las que se anotan en el cuadro siguiente:

 Tabla 32

 Estaciones meteorológicas consultadas

	Ubio	ación		
Estación	Latitud	Longitud	Provincia	Altitud msnm
Yanahuanca	10° 29´ 22.57"	76° 30´ 46.26"	Daniel Alcides Carrión	3150
San Rafael	10° 19′ 45.27"	76° 10′ 35.47"	Ambo	2722
Huánuco	9° 57′ 7.24"	76° 14′ 54.8"	Huánuco	1947

Nota. Información de datos meteorológico de la región Huánuco, estación San Rafael.

Fuente: Servicio Nacional de Meteorología e Hidrología del Perú, Senamhi.

Pocos datos históricos de otros observatorios de la región están desactualizados y desordenados, por lo que no han sido debidamente investigados.

- Estación Chacayanno está en funcionamiento
- Estación San Rafaelaño 1998 (no está en funcionando)

Descripción de registros:

Es necesario completar períodos faltantes, ya que en el año 1989 no se cuenta con datos de precipitación, por lo cual no se recurrió a diversos métodos de análisis. Se cuenta con 30 años de registro en la estación San Rafael y 30 años para la estación Huánuco.

Tabla 33

Estaciones consultadas

Año	Est. San Rafael	Est. Huánuco
1987	173	18.6
1988	42.7	20.1
1989	x	27.4
1990	90	21.3
1991	14	28.8
1992	8	38.4
1993	40	18
1994	136.5	24
1995	36.8	18.9
1996	22.8	17.1
1997	56.7	11.4
1998	29.4	27.5
1999	21.6	33
2000	25.1	20.3

2001	41.8	48.7
2002	29.9	27.2
2003	52.9	23
2004	29.6	17.6
2005	32	25.5
2006	28.8	28
2007	31.9	27.9
2008	42.1	33.1
2009	25.5	19.6
2010	25.1	22.6
2011	21.8	35.4
2012	33.5	30.7
2013	41.1	19.9
2014	33	24.8
2015	16.4	31.7
2016	28.2	18

Nota. Registro de 30 años en diversos métodos de análisis de la estación de San Rafael.

Fuente: Servicio Nacional de Meteorología e Hidrología del Perú, Senamhi.

Debido a la necesidad de agregar períodos faltantes, se utilizan diferentes métodos de análisis. Hay 30 años en la base de Huánuco y 30 años en la base de San Rafael para poder caracterizar el comportamiento en la quebrada y generar corrientes oceánicas.

Los registros de precipitaciones a menudo encuentran datos faltantes, esto se debe a la ausencia del conductor o falla del equipo. En los registros del año 1987, 1990 y 1994 se nota que los datos de precipitaciones están excesivamente muy altos, lo que se concluye que existe error instrumental o error de digitalización de la estación san Rafael.

Precipitación máxima

se cuenta con precipitación máxima en 24 horas de la estación San Rafael:

Según el estudio de miles de estaciones - año de datos de pluviométricos indican que al multiplicar las cantidades máximas anuales de lluvia diaria u horaria para un solo intervalo fijo de observación de una a 24 horas por el factor 1.13, producirán valores que se aproximan mucho a los que se obtendrían de un análisis de los máximos reales.

Los factores recomendados por la OMM para el ajuste de valores de lluvia a intervalos fijos de acuerdo con el número de unidades de observación dentro del intervalo se pueden aproximar a datos reales multiplicando por el factor 1.13 para este estudio.

Tabla 34

Valores máximos de precipitaciones en 24 horas mensual

Año	Est. San Rafael	Est. Huánuco
1987	22.96	25.94
1988	42.7	48.2
1989	33.82	38.2
1990	26.29	29.71
1991	14	15.82
1992	8	9.04
1993	40	45.2
1994	29.62	33.47
1995	36.8	41.58
1996	22.8	25.76
1997	56.7	64.07
1998	29.4	33.22
1999	21.6	24.41

2000	25.1	28.36
2001	41.8	47.23
2002	29.9	33.79
2003	52.9	59.78
2004	29.6	33.45
2005	32	36.16
2006	28.8	32.54
2007	31.9	36.05
2008	42.1	47.57
2009	25.5	28.82
2010	25.1	28.36
2011	21.8	24.63
2012	33.5	37.86
2013	41.1	46.44
2014	33	37.29
2015	16.4	18.53
2016	28.2	31.87

Nota. Registro de 30 años en valores máximos de precipitación de 24 horas de la estación de San Rafael.

Fuente: Servicio Nacional de Meteorología e Hidrología del Perú, Senamhi.

4.2.4.3. CÁLCULO DE PERIODOS DE RETORNO

La relación entre la probabilidad de superar un evento en particular, la vida útil de la estructura y el riesgo aceptable de falla debe considerarse para determinar el período de recuperación que debe emplearse en el diseño de la estructura. factores sociales, tecnológicos y otros.

El tiempo de amortización y el riesgo aceptable de falla durante la vida útil de la estructura resultan de:

$$R = 1 - (1 - 1/T)^n$$

n = años de vida útil.

R = Riesgo de falla admisible.

T = Periodo de retorno de la estructura.

De acuerdo al Manual del MTC, existe una tabla de valores de riesgo aceptable recomendados para obras de drenaje.

 Tabla 35

 Valores máximos recomendados de riesgo admisible de obras de drenaje

Tipo de Obra	Riesgo Admisible (**) (%)
Puentes (*)	25
Alcantarilla de paso de quebradas importantes y badenes	30
Alcantarilla de paso de quebradas menores y descarga de agua de cunetas	35
Drenaje de la plataforma a nivel longitudinal	40
Subdrenes	40
Defensas ribereñas	25

Nota. Tipo de obra en el riesgo admisible.

(*)

- Para la obtención de la luz y nivel de aguas máximas extraordinarias.
- Se recomienda un periodo de retorno T de 500 años para el cálculo de socavación.

(**) Vida útil considerados (n)

- Puentes y defensas ribereñas n=40 años.
- Alcantarilla de quebradas importantes n=25 años.
- Alcantarilla de quebradas menores n=15 años.
- Drenaje de plataforma y subdrenes n= 15 años.

Se tendría en cuenta, la importancia y la vida útil de la obra diseñada; el propietario de una obra es el que define el riesgo admisible de falla y la vida útil de las obras.

Para Puente

n = 40 años de vida útil.

R = 0.25.

reemplazando en la fórmula se tiene: $R = 1 - (1 - 1/T)^n$

T = 139.54

Para puente se considera un periodo de retorno de 140 años, con el cual calcularemos su caudal máximo para estas estructuras respectivas.

• Para drenaje de plataforma (nivel longitudinal) o cuneta

n = 15 años de vida útil.

R = 0.40

 $R = 1 - (1 - 1/T)^n$

reemplazando en la fórmula se tiene:

T = 29.867

Para cunetas se considera un periodo de retorno de 35 años, con el cual calcularemos su caudal máximo para estas estructuras respectivas.

Para alcantarillas de quebradas menores, descargas de cunetas

n = 15 años de vida útil.

R = 0.35

 $R = 1 - (1 - 1/T)^n$

reemplazando en la fórmula se tiene:

T = 35.323

Para alcantarilla de alivio consideramos un periodo de retorno de 36 años; con el cual calcularemos su caudal máximo para estas estructuras respectivas.

Para alcantarillas de paso de quebradas importantes y badenes

n = 15 años de vida útil.

R = 0.30

reemplazando en la fórmula se tien $e^{\frac{\pi}{2} \cdot 1 - (1 - 1/T)^n}$

T = 70.593

Para alcantarillas de paso de quebradas y badenes consideramos un periodo de retorno de 71 años, con el cual calcularemos su caudal máximo para estas estructuras respectivas.

Para defensas ribereñas

n = 40 años de vida útil.

$$R = 0.25$$

$$R = 1 - (1 - 1/T)^n$$

reemplazando en la fórmula se tiene:

T = 139.54

Para defensas ribereñas se considera un periodo de retorno de 140 años, con el cual calcularemos su caudal máximo para estas estructuras respectivas.

Tabla 36

Resumen de periodos de retorno

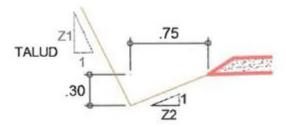
Descripción	Año de vida útil	Riesgo admisible (%)	Periodo de retorno (T)
Cuneta	15	40	30
Alcantarillas menores	15	35	36
Alc. Quebradas imp. y badenes	25	30	71
Puentes	40	25	140
Defensas ribereñas	40	25	140

Nota. En la siguiente tabla se presenta el resumen de las precipitaciones según el ajuste de los datos a distintas funciones de probabilidades para la estación de San Rafael; para diferentes periodos de retornos.

Figura 9

Ubicación de punto geodésico existente

Nota. Se tiene la monumentación del punto geodésico en el tramo I, para la ejecución del proyecto.


Drenaje

Cunetas

Precisamente, para todos los tramos a pie de talud perforado adyacentes a caminos verticalmente paralelos, existe una cuota de perforación a lo largo de todo el eje proyectado.

Figura 10

Cuneta tipo 1

Nota. Relación de cuentas en el eje proyectado.

Diseño de cunetas

Para el diseño hidráulico de las cunetas utilizaremos el principio de flujo de canales abiertos, usando la ecuación de Manning.

$$Q = A \times V = \frac{\left(AxR_h^{2/2} - xS^{1/2}\right)}{n}$$

Donde:

Q : Caudal (m^3/seg) .

V: Velocidad media (m/s).

A : Área de la sección (m2).

P : Perímetro mojado (m).

 R_h : A/P Radio hidráulico (m) (área de la sección entre el perímetro mojado).

S: Pendiente del fondo (m/m).

n : Coeficiente de rugosidad de Manning.

Tabla 37

Valores de coeficiente de rugosidad de Manning

	Tierra recta y uniforme	0.016	0.018
	nuevo grava con algo de	0.022	0.025
	vegetación	0.022	0.027
		0.023	0.025
	Tierra sinuosa, sin vegetación con malezas y	0.025	0.03
C. Excavado	pastos tupidas, plantas de fondo pedregosos - maleza	0.03	0.035
		0.025	0.035
	Roca suave y uniforme	0.025	0.035
	regular	0.035	0.04
	Canales sin mantención,	0.05	0.08
	maleza tupida, fondo limpio y bordes con vegetación	0.04	0.05

Nota. Valores en el área de excavación. De acuerdo al tipo de suelo. Fuente: Manual de carretera: diseño geométrico (MTC) DG-2018.

4.2.4.4. CALCULEMOS EL CAUDAL DEL MANNING DE LAS CUNETAS

Los detalles se encuentran en las siguientes tablas

Tabla 38

Parámetros hidráulicos por cada tramo de cunetas: Tramo I: Marayzondor – Santo Domingo de Rondos

Tra	mo	Longitud de cuneta	Pendien te de fondos (m/m)	Talud exterior Z1	Ancho B (m)	Profun didad H (m)	Área de la sección (m)	Perímetro mojado (m)	Radio Hidráulico Rh(m)	coef. Manning	Caudal m3/s
00+000	00+180	180	0.066	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.191
00+180	00+320	140	0.07	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.196
00+320	00+470	15	0.058	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.178
00+470	00+740	270	0.071	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.198
00+740	00+860	120	0.057	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.177
00+860	01+130	270	0.073	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.201
01+130	01+410	280	0.057	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.177
01+410	01+590	180	0.07	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.197
01+590	01+840	250	0.071	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.198
01+840	02+000	160	0.071	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.198
02+000	02+260	260	0.071	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.202
02+260	02+480	220	0.064	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.187

02+480	02+614	134	0.02	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.104
02+614	02+660	46	0.038	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.145
02+660	02+830	170	0.068	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.194
02+830	03+010	180	0.079	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.209
03+010	03+200	190	0.057	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.177
03+200	03+460	260	0.08	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.209
03+460	03+630	170	0.056	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.176
03+630	03+950	320	0.074	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.202
03+950	04+200	250	0.077	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.205
04+200	04+380	180	0.059	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.18
04+380	04+560	180	0.035	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.138
04+560	04+783	223	0.075	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.203
04+783	05+030	247	0.072	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.199
05+030	05+280	250	0.095	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.229
05+280	05+520	240	0.057	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.178
05+520	05+810	290	0.076	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.205

05+810	06+040	230	0.081	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.212
06+040	06+320	280	0.08	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.209
06+320	06+585	265	0.08	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.21
06+585	06+850	265	0.08	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.21
06+850	07+050	200	0.089	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.222
07+050	07+230	180	0.081	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.212
07+230	07+460	230	0.077	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.206
07+460	07+684	224	0.073	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.201

Nota. Datos adquiridos del Tramo I: Marayzondor – Santo Domingo de Rondos y del estudio hidrológico.

Tabla 39

Tramo II: Marayzondor – Huillaparac

Tra	ımo	Longitud de cuneta	Pendiente de fondos (m/m)	Talud exterior Z1	Ancho B (m)	Profundidad H (m)	Área de la sección (m)	Perímetro mojado (m)	Radio Hidráulico Rh(m)	coef. Manning	Caudal m3/s
00+005	00+200	195	0.078	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.207
00+200	00+305	105	0.061	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.184
00+305	00+600	295	0.068	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.193
00+600	00+900	300	0.07	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.196
00+900	01+180	280	0.073	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.2
01+180	01+480	300	0.068	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.194
01+480	01+780	300	0.081	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.211
01+780	01+950	170	0.079	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.208
01+950	02+190	240	0.053	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.171
02+190	02+510	320	0.109	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.245
02+510	02+640	130	0.088	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.22
02+640	02+880	240	0.095	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.228

02+880	03+180	300	0.077	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.206
03+180	03+500	320	0.082	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.212
03+500	03+614	114	0.065	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.189
03+614	03+800	186	0.056	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.176
03+800	03+990	190	0.059	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.18
03+990	04+050	60	0.039	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.146
04+050	04+300	250	0.072	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.199
04+300	04+600	300	0.062	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.185
04+600	04+900	300	0.06	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.182
04+900	04+980	80	0.049	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.165
04+980	05+200	220	0.036	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.178
05+200	05+460	260	0.057	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.195
05+460	05+700	240	0.069	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.154
05+700	05+960	260	0.043	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.181
05+960	06+240	280	0.059	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.173
06+240	06+550	310	0.054	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.142

•	06+550	06+820	270	0.036	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.17
	06+820	06+930	110	0.052	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.202
	06+930	07+060	130	0.075	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.196
	07+060	07+216	156	0.07	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.164
	07+216	07+370	154	0.049	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.171
	07+370	07+556	186	0.053	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.185
	07+556	07+750	194	0.062	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.198
	07+750	07+930	180	0.071	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.195
	07+930	08+160	230	0.069	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.188
	08+160	08+350	190	0.064	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.153
	08+350	08+600	250	0.042	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.135
	08+600	08+880	280	0.033	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.155
	08+880	09+068	188	0.024	3:1	0.75	0.25	0.1042	1.0541	0.0988	0.03	0.115

Nota. Datos adquiridos del Tramo II: Marayzondor – Huillaparac y del estudio hidrológico.

Estos caudales calculados deben ser de menor al caudal de aporte para un periodo de retorno de 30 años; el caudal de aporte se haya considerado un área de talud de 15 – 400, metros hacia arriba, siendo muy conservadores. Se tiene también la velocidad, calculando el caudal de aporte entre el área de la sección.

La fórmula para caudal de aporte utilizamos el método racional

Q=0.278*C*I*A

Donde:

Q = Descarga máxima de diseño (m3/s).

C = Coeficiente de escorrentía (ver la tabla del manual de hidrología y drenaje del MTC).

I = Intensidad de precipitación máxima horaria (mm/h).

A = Área (km2).

Para el diseño de cunetas se tiene la condición:

Caudal de Manning > Caudal de aporte (hidrológico).

Caudales y velocidad para periodo de retorno T = 30 años.

Tabla 40

Tramo I: Marayzondor – Santo Domingo de Rondos

	nte		Área de influencia km2 Coeficie nte de Platafo Talud			Q cauda I de	Q caudal Manning	Confor midad	Vel.	
Tra	imo	nte de escurri miento	rma	raiud		aporte (m3/s)	(m3/s)	midad		
00+000	00+180	0.3	0.0005	0.022	45.716	0.084	0.191	ok	0.81	
00+180	00+320	0.3	0.0004	0.017	53.711	0.077	0.196	ok	0.741	
00+320	00+470	0.3	0.0005	0.018	48.836	0.075	0.178	ok	0.721	
00+470	00+740	0.3	0.0008	0.032	36.958	0.102	0.198	ok	0.983	
00+740	00+860	0.3	0.0004	0.014	55.4	0.068	0.177	ok	0.655	
00+860	01+130	0.3	0.0008	0.032	37.254	0.103	0.201	ok	0.991	
01+130	01+410	0.3	0.0008	0.034	33.969	0.098	0.177	ok	0.937	
01+410	01+590	0.3	0.0005	0.022	46.529	0.086	0.197	ok	0.825	

01+590	01+840	0.3	0.0008	0.03	38.579	0.099	0.198	ok	0.95
01+840	02+000	0.3	0.0005	0.019	49.916	0.082	0.198	ok	0.787
02+000	02+260	0.3	0.0008	0.031	38.237	0.102	0.202	ok	0.979
02+260	02+480	0.3	0.0007	0.026	40.273	0.091	0.187	ok	0.873
02+480	02+614	0.3	0.0004	0.016	38.283	0.053	0.104	ok	0.505
02+614	02+660	0.3	0.0001	0.006	85.653	0.04	0.145	ok	0.388
02+660	02+830	0.3	0.0005	0.02	47.661	0.083	0.194	ok	0.798
02+830	03+010	0.3	0.0005	0.022	48.125	0.089	0.209	ok	0.853
03+010	03+200	0.3	0.0006	0.023	42.433	0.083	0.177	ok	0.794
03+200	03+460	0.3	0.0008	0.031	38.995	0.104	0.209	ok	0.998
03+460	03+630	0.3	0.0005	0.02	45.126	0.079	0.176	ok	0.755
03+630	03+950	0.3	0.001	0.038	33.865	0.111	0.202	ok	1.067
03+950	04+200	0.3	0.0008	0.03	39.458	0.101	0.205	ok	0.971
04+200	04+380	0.3	0.0005	0.022	44.217	0.082	0.18	ok	0.784
04+380	04+560	0.3	0.0005	0.022	37.923	0.07	0.138	ok	0.672
04+560	04+783	0.3	0.0007	0.027	41.835	0.096	0.203	ok	0.919
04+783	05+030	0.3	0.0007	0.03	38.978	0.099	0.199	ok	0.948
05+030	05+280	0.3	0.0008	0.03	41.975	0.108	0.229	ok	1.033
05+280	05+520	0.3	0.0007	0.029	37.148	0.091	0.178	ok	0.878
05+520	05+810	0.3	0.0009	0.035	36.132	0.107	0.205	ok	1.032
05+810	06+040	0.3	0.0007	0.028	42.124	0.099	0.212	ok	0.954
06+040	06+320	0.3	0.0008	0.034	37.374	0.107	0.209	ok	1.031
06+320	06+585	0.3	0.0008	0.032	38.59	0.105	0.21	ok	1.007
06+585	06+850	0.3	0.0008	0.032	38.595	0.105	0.21	ok	1.007
06+850	07+050	0.3	0.0006	0.024	46.904	0.096	0.222	ok	0.924
07+050	07+230	0.3	0.0005	0.022	48.526	0.09	0.212	ok	0.86
07+230	07+460	0.3	0.0007	0.028	41.438	0.098	0.206	ok	0.939

|--|

Nota. Datos adquiridos del estudio hidrológico del *Tramo I: Marayzondor* – *Santo Domingo de Rondos.*

Tabla 41

Tramo II: Marayzondor – Huillaparac

Tramo	Coeficie nte de		Área de influencia km2		Q caudal	Q caudal	Conform		
Tra	imo	escurrimi ento	Platafor ma	Talud	l máx.	de aporte (m3/s)	Mannin g (m3/s)	idad	Vel.
00+005	00+200	0.3	0.0006	0.023	45.79	0.92	0.207	ok	0.879
00+200	00+305	0.3	0.0003	0.13	61.043	0.066	0.184	ok	0.631
00+305	00+600	0.3	0.0008	0.035	34.628	0.105	0.193	ok	1.006
00+600	00+900	0.3	0.0009	0.036	34.554	0.106	0.196	ok	1.021
00+900	01+180	0.3	0.0009	0.034	36.421	0.105	0.2	ok	1.004
01+180	01+480	0.3	0.0008	0.036	34.313	0.106	0.194	ok	1.014
01+480	01+780	0.3	0.0009	0.036	36.11	0.111	0.211	ok	1.067
01+780	01+950	0.3	0.0009	0.02	49.634	0.087	0.208	ok	0.831
01+950	02+190	0.3	0.0008	0.029	36.365	0.09	0.171	ok	0.859
02+190	02+510	0.3	0.0009	0.038	37.904	0.124	0.245	ok	1.194
02+510	02+640	0.3	0.0009	0.016	59.919	0.08	0.22	ok	0.767
02+640	02+880	0.3	0.0005	0.029	42.949	0.106	0.228	ok	1.015
02+880	03+180	0.3	0.0007	0.036	35.583	0.11	0.206	ok	1.051
03+180	03+500	0.3	0.001	0.038	34.825	0.114	0.212	ok	1.097
03+500	03+614	0.3	0.0003	0.014	59.196	0.069	0.189	ok	0.665
03+614	03+800	0.3	0.0006	0.022	42.826	0.082	0.176	ok	0.784
03+800	03+990	0.3	0.0006	0.023	42.891	0.084	0.18	ok	0.803
03+990	04+050	0.3	0.0002	0.007	73.997	0.046	0.146	ok	0.437
04+050	04+300	0.3	0.0008	0.03	38.704	0.099	0.199	ok	0.953

04+300	04+600	0.3	0.0009	0.036	33.38	0.103	0.185	ok	0.986
04+600	04+900	0.3	0.0009	0.036	33.155	0.102	0.182	ok	0.98
04+900	04+980	0.3	0.0002	0.01	67.039	0.055	0.165	ok	0.528
04+980	05+200	0.3	0.0006	0.022	34.181	0.064	0.141	ok	0.617
05+200	05+460	0.3	0.0008	0.031	35.458	0.095	0.178	ok	0.908
05+460	05+700	0.3	0.0007	0.029	39.201	0.097	0.195	ok	0.927
05+700	05+960	0.3	0.0008	0.031	32.636	0.087	0.154	ok	0.836
05+960	06+240	0.3	0.0008	0.034	34.337	0.099	0.181	ok	0.947
06+240	06+550	0.3	0.0009	0.037	31.564	0.1	0.173	ok	0.964
06+550	06+820	0.3	0.0008	0.032	30.452	0.084	0.142	ok	0.81
06+820	06+930	0.3	0.0003	0.013	56.802	0.064	0.17	ok	0.615
06+930	07+060	0.3	0.0004	0.016	57.085	0.076	0.202	ok	0.731
07+060	07+216	0.3	0.0005	0.019	50.403	0.081	0.196	ok	0.774
07+216	07+370	0.3	0.0005	0.018	45.866	0.072	0.164	ok	0.696
07+370	07+556	0.3	0.0006	0.022	42.518	0.081	0.171	ok	0.779
07+556	07+750	0.3	0.0006	0.023	43.895	0.087	0.185	ok	0.839
07+750	07+930	0.3	0.0005	0.022	46.719	0.086	0.198	ok	0.828
07+930	08+160	0.3	0.0007	0.028	40.163	0.095	0.195	ok	0.91
08+160	08+350	0.3	0.0006	0.023	43.897	0.086	0.188	ok	0.821
08+350	08+600	0.3	0.0008	0.03	33.239	0.085	0.153	ok	0.818
08+600	08+880	0.3	0.0008	0.034	28.986	0.083	0.135	ok	0.799
08+880	09+068	0.3	0.0006	0.023	33.232	0.064	0.115	ok	0.615

Nota. Datos adquiridos del estudio hidrológico del Tramo II: Marayzondor – Huillaparac. Observando las velocidades que se presentan en las cunetas y las pendientes por tramos, se concluye según el manual de hidrología y drenaje del MTC; que no es necesario el revestimiento de cunetas.

Tabla 42

Tipo de superficie

Tipo de superficie	Velocidad límite admisible (M/S)
Arena fina o limo (poca o ninguna arcilla)	0.20 - 0.60
Arena arcillosa dura y margas duras	0.60 - 0.90
Terreno parcialmente cubierto de vegetación	0.60 – 1.20
Arcilla grava, pizarras blandas con cubierta vegetal	1.20 – 1.50
Hierba	1.20 – 1.80
Conglomerado, pizarras duras y rocas blandas	1.40 – 2.40
Mampostería y rocas duras	3.00 - 4.50*
Concreto	4.50 - 6.00*

^{*} Para flujos de muy corta duración.

Nota. Manual de diseño de carreteras pavimentadas de bajo volumen de tránsito - MTC.

Fuente: Manual de carretera: Diseño geométrico (MTC) DG-2018.

Alcantarillas

Si existen canales estructurales de hormigón de sección rectangular y el caudal es pequeño, se colocan al nivel requerido de manera que la pendiente coincida con el nivel superior de la losa o con el fondo del terraplén.

Alcantarilla de Alivio

para las alcantarillas de alivio se tiene que el área será de 50 a 600 metros de talud según el área de influencia y longitud de escorrentía será la longitud de cuneta a descargar; las tajeas de paso se diseñarán como alcantarilla de alivio, ya que van a cumplir esa función en dicho tramo, así como también el paso de riachuelos dedicado a riego, excepto las tajeas exclusivamente de canales de paso.

Se usa los siguientes parámetros:

- Tomaremos periodo de retorno para este tipo de estructuras T=36 años para alcantarillas de cruce de riego y aliviadores y T=71 años, para estructuras de cruce de quebradas.
- Para periodo de retorno T=71 años, tenemos dos quebradas donde plantearemos alcantarilla de paso de quebrada cuyo caudal.

$$I = \frac{206.7858 \, x \, T^{0.3342}}{0.7500}$$

 Coeficiente de escorrentía para la zona en estudio de acuerdo al manual de hidrología y drenaje es de pastos, vegetación ligera de suelo permeable con pendiente mayor de 20%; cuyo valor es de 0.30, pero siendo conservadores y por tratarse del diseño hidráulico de alcantarillas el valor del coeficiente de escurrimiento será de 0.35.

Tabla 43Coeficiente de escorrentía método racional

Coeficientes de escorrentía método racional

			Pendie	nte del	terreno	
Cobertura vegetal	Tipo de suelo	Pronunciada	Alta	Media	Suave	Despreciable
		> 50%	> 20%	> 5%	>1%	< 1%
	Impermeable	0.9	0.75	0.7	0.65	0.6
Sin vegetación	Semipermeable	0.7	0.65	0.6	0.35	0.5
	Permeable	0.5	0.45	0.4	0.55	0.3
	Impermeable	0.7	0.65	0.6	0.45	0.5
Cultivos	Semipermeable	0.6	0.55	0.5	0.2	0.4
	Permeable	0.4	0.35	0.3	0.5	0.2
	Impermeable	0.65	0.6	0.55	0.4	0.45
Pastos de vegetación ligera	Semipermeable	0.55	0.5	0.45	0.2	0.35
	Permeable	0.35	0.3	0.2	0.2	0.15
	Impermeable	0.6	0.55	0.5	0.45	0.4
Hierba grama	Semipermeable	0.5	0.45	0.4	0.35	0.3
	Permeable	0.3	0.25	0.2	0.15	0.1
	Impermeable	0.55	0.5	0.45	0.4	0.35
Bosques densa de vegetación	Semipermeable	0.45	0.4	0.35	0.3	0.25
	Permeable	0.25	0.2	0.15	0.1	0.05

Nota. Datos obtenidos con la vegetación en el pendiente del terreno I y II.

El valor del coeficiente de escorrentía se determina con base en las características hidrológicas y topográficas del cauce donde el flujo intercepta el curso de comunicación probado. Por lo tanto, la tasa de dilución depende de estas propiedades. Con este parámetro de coeficiente de escorrentía tenemos el caudal de tajeas que a su vez también cumple función de aliviaderos para un periodo de retorno de 36 años utilizando el método racional del manual de hidrología y drenaje del MTC.

$$Q = 0.278*C*I*A$$

Donde:

Q = Descarga máxima de diseño (m3/s).

C = Coeficiente de escorrentía (ver la tabla del manual de hidrología y drenaje del MTC).

I = Intensidad de precipitación máxima horaria (mm/h).

A = Área (km2).

Tabla 44

Caudal de alcantarilla Tramo 1

I te m	Obra de arte	Prog.	Descripc ión	Lon g. Cur so de agu a (L) m	A niv el (H) m	Tiemp o de conce nt. (tc)	Intensid ad máx.(I)	Coef. De escorre ntía (C)	Área de apor te	Caud al (Q m3/s)	Caud al dise ño (Q m3/s
1	Alcantar illa	00+1 80	Alc. de alivio	140	11. 2	2.32	364.74	0.3	0.00 04	0.128	0.128
2	Alcantar illa	00+4 70	Alc. de alivio	270	21. 6	3.84	249.61	0.3	0.10 8	2.248	2.248
3	Alcantar illa	00+7 40	Alc. de alivio	120	9.6	2.06	398.7	0.3	0.00 5	0.16	0.16
4	Alcantar illa	02 + 2 60	Alc. de alivio	240	19. 2	3.51	267.18	0.3	0.07 2	1.604	1.604
5	Alcantar illa	02+6 14	Alc. de alivio	160	12. 8	2.57	337.68	0.3	0.09 6	2.704	2.704
6	Alcantar illa	03+9 50	Alc. de alivio	250	20	3.62	260.96	0.3	0.07 5	1.632	1.632
7	Alcantar illa	04+2 00	Alc. de alivio	180	14. 4	2.81	315.47	0.3	0.07 2	1.894	1.894

8	Alcantar illa	06+0 40	Alc. de alivio	280	22. 4	3.95	244.42	0.3	0.08 4	1.712	1.712
9	Alcantar illa	06+3 20	Alc. de alivio	265	21. 2	3.79	252.32	0.3	0.08	1.673	1.673
10	Alcantar illa	06+5 85	Alc. de alivio	265	21. 2	3.79	252.32	0.3	0.08	1.673	1.673
11	Alcantar illa	06+8 50	Alc. de alivio	205	16. 4	3.11	292.64	0.3	0.06 2	1.501	1.501

Nota. Resultados del Caudal de alcantarilla Tramo 1

Tabla 45

Caudal de alcantarilla Tramo 2

Ite m	Obra de arte	Prog.	Descripc ión	Lon g. Cur so de agu a (L) m	A niv el (H) m	Tiemp o de conce nt. (tc)	Intensid ad max.(I)	Coef. De escorre ntía (C)	Área de apor te	Caud al (Q m3/s	Caud al dise ño (Q m3/s
12	Alcantar illa	00+0 05	Alc. de alivio	275	22	3.9	246.98	0.3	0.05 5	1.133	1.133
13	Alcantar illa	00+6 00	Alc. de alivio	300	24	4.17	234.88	0.3	0.04 5	0.881	0.881
14	Alcantar illa	00+9 00	Alc. de alivio	275	22	3.9	246.98	0.3	0.02 8	0.566	0.566
15	Alcantar illa	01+4 80	Alc. de alivio	300		4.17	234.88	0.3	0.03	0.588	0.588
16	Alcantar illa	02+8 80	Alc. de alivio	300	24	4.17	234.88	0.3	0.10 5	2.057	2.057
17	Alcantar illa	03+1 80	Alc. de alivio	320	25. 6	4.38	226.28	0.3	0.11 2	2.114	2.114
18	Alcantar illa	03+6 14	Alc. de paso	300	24	4.17	234.88	0.3	0.15	2.938	2.938
19	Alcantar illa	03+9 90	Alc. de alivio	60	4.8	1.21	594.97	0.3	0.02 1	1.042	1.042
20	Alcantar illa	04+0 50	Alc. de paso								4.85
21	Alcantar illa	04+3 00	Alc. de alivio	300	24	4.17	234.88	0.3	0.09	1.763	1.763

22	Alcantar illa	04+6 00	Alc. de alivio	300	24	4.17	234.88	0.3	0.09	1.763	1.763
23	Alcantar	04+9	Alc. de	300	24	4.17	234.88	0.3	0.15	2.938	2.938
23	illa	80	paso	300	24	4.17	234.00	0.5	0.13	2.930	2.930
24	Alcantar illa	05+2 00	Alc. de alivio	260	20. 8	3.73	255.11	0.3	0.10 4	2.213	2.213
25	Alcantar illa	05+4 60	Alc. de alivio	240	19. 2	3.51	267.18	0.3	0.09 6	2.139	2.139
26	Alcantar illa	05+9 60	Alc. de alivio	260	20. 8	3.73	255.11	0.3	0.10 4	2.213	2.213
27	Alcantar illa	06+2 40	Alc. de alivio	280	22. 4	3.95	244.42	0.3	0.09 8	1.998	1.998
28	Alcantar illa	06+5 50	Alc. de paso								5.23
29	Alcantar illa	06+9 30	Alc. de paso	240	19. 2	3.51	267.18	0.3	0.12	2.674	2.674
30	Alcantar illa	08+1 60	Alc. de alivio	190	15. 2	2.93	305.77	0.3	0.07 6	1.938	1.938
31	Alcantar illa	08+3 50	Alc. de alivio	250	20	3.62	260.96	0.3	0.1	2.176	2.176
32	Alcantar illa	08+6 00	Alc. de alivio	280	22. 4	3.95	244.42	0.3	0.09 8	1.998	1.998
33	Alcantar illa	08+8 80	Alc. de alivio	188	15. 04	2.91	307.65	0.3	0.07 5	1.929	1.929

Nota. Resultados del Caudal de alcantarilla Tramo 2.

Tabla 46Dimensiones de alcantarilla Tramo 1

Item	Obra de arte	Prog.	Descripci ón	Cauda I diseñ o (Q m3/s)	Dimensio nes	Pendie nte de alcant arilla (%)	Caudal de Manning (Q M3/s)
1	Alcantarilla	00+180	Alc. de alivio	0.128	0.80 x 0.80	2.5	2.255
2	Alcantarilla	00+470	Alc. de alivio	2.248	0.80 x 0.80	2.5	2.255
3	Alcantarilla	00+740	Alc. de alivio	0.16	0.80 x 0.80	2.5	2.255

4	Alcantarilla	02+260	Alc. de alivio	1.604	0.80 x 0.80	2.5	2.255
5	Alcantarilla	02+614	Alc. de alivio	2.704	1.00 x 1.00	2.5	4.088
6	Alcantarilla	03+950	Alc. de alivio	1.632	0.80 x 0.80	2.5	2.255
7	Alcantarilla	04+200	Alc. de alivio	1.894	0.80 x 0.80	2.5	2.255
8	Alcantarilla	06+040	Alc. de alivio	1.712	1.00 x 1.00	2.5	4.088
9	Alcantarilla	06+320	Alc. de alivio	1.673	0.80 x 0.80	2.5	2.852
10	Alcantarilla	06+585	Alc. de alivio	1.673	0.80 x 0.80	2.5	2.255
11	Alcantarilla	06+850	Alc. de alivio	1.501	0.80 x 0.80	2.5	2.255

Nota. Medida de dimensiones de alcantarilla del Tramo 1.

Tabla 47

Dimensiones de alcantarilla Tramo 2

Item	Obra de arte	Prog.	Descripción	Caudal diseño (Q m3/s)	Dimensiones	Pendiente de alcantarilla (%)	Caudal de Manning (Q M3/s)
12	Alcantarilla	00+005	Alc. de alivio	1.133	0.80 x 0.80	2.5	2.255
13	Alcantarilla	00+600	Alc. de alivio	0.881	0.80 x 0.80	2.5	2.255
14	Alcantarilla	00+900	Alc. de alivio	0.566	0.80 x 0.80	2.5	2.255
15	Alcantarilla	01+480	Alc. de alivio	0.588	0.80 x 0.80	2.5	2.255
16	Alcantarilla	02+880	Alc. de alivio	2.057	0.80 x 0.80	2.5	2.255
17	Alcantarilla	03+180	Alc. de alivio	2.114	0.80 x 0.80	2.5	2.255

18	Alcantarilla	03+614	Alc. de paso	2.938	1.00 x 1.00	2.5	4.088
19	Alcantarilla	03+990	Alc. de alivio	1.042	0.80 x 0.80	2.5	2.255
20	Alcantarilla	04+050	Alc. de paso	4.85	1.20 x 1.00	2.5	5.26
21	Alcantarilla	04+300	Alc. de alivio	1.763	0.80 x 0.80	2.5	2.255
22	Alcantarilla	04+600	Alc. de alivio	1.763	0.80 x 0.80	2.5	2.255
23	Alcantarilla	04+980	Alc. de paso	2.938	1.00 x 1.00	2.5	4.088
24	Alcantarilla	05+200	Alc. de alivio	2.213	0.80 x 0.80	2.5	2.255
25	Alcantarilla	05+460	Alc. de alivio	2.139	0.80 x 0.80	2.5	2.255
26	Alcantarilla	05+960	Alc. de alivio	2.213	0.80 x 0.80	2.5	2.255
27	Alcantarilla	06+240	Alc. de alivio	1.998	0.80 x 0.80	2.5	2.255
28	Alcantarilla	06+550	Alc. de paso	5.23	1.20 x 1.00	2.5	5.26
29	Alcantarilla	06+930	Alc. de paso	2.674	1.00 x 1.00	2.5	4.088
30	Alcantarilla	08+160	Alc. de alivio	1.938	0.80 x 0.80	2.5	2.255
31	Alcantarilla	08+350	Alc. de alivio	2.176	0.80 x 0.80	2.5	2.255
32	Alcantarilla	08+600	Alc. de alivio	1.998	0.80 x 0.80	2.5	2.255
33	Alcantarilla	08+880	Alc. de alivio	1.929	0.80 x 0.80	2.5	2.255

Nota. Medida de dimensiones de alcantarilla del Tramo 2.

Fuente: Manual de carretera: diseño geométrico (MTC) DG-2018.

Puentes

Debido a las condiciones topográficas, geológicas, e hidráulicas planteamos en las siguientes quebradas puentes de las longitudes requeridas, para los cuales calculamos los parámetros hidro morfológicos mínimos.

 Tabla 48

 Caudales de quebradas para diferentes periodos de retorno

		Caudal máximo - Qmax (m3/s)						
Quebradas		Tiempo de retorno (años)						
Descripción	Ubicación	36	71	140	200	500		
Subsecuencia N°1 (Qda Cuchura)	04+560	18	24.06	31.78	36.64	52.24		
Subsecuencia N°2 (Qda S/N)	04+783	5.41	6.11	8	9.18	12.98		
Subsecuencia N°3 (Qda S/N)	04+050	3.59	4.85	6.47	7.49	10.78		
Subsecuencia N°4 (Qda S/N)	06+550	4.61	5.23	8.32	9.63	13.86		
Subsecuencia N°5 (Qda S/N)	07+216	9.13	10.4	13.87	16.06	23.1		
Subsecuencia N°6 (Ramón Ragra)	07+566	13.91	18.59	24.56	28.31	40.37		

Nota. Cálculo hidráulico mediante el programa descrito en el informe de hidrología e hidráulica, se muestran los parámetros hidráulicos. Fuente: Manual de carretera: diseño geométrico (MTC) DG-2018.

Tabla 49

Resumen de parámetros hidráulicos

Prog.	Longitud	Caudales m3/2	Velocidad m/s	Tirante m	Gálibo m
04+560	L = 12	31.78	2.94	0.78	> 2.5
04+783	L = 10	8.00	1.89	0.39	> 2.5
07+216	L = 6	13.87	2.50	0.68	> 2.5
07+556	L = 14	24.56	2.53	0.61	> 2.5

Nota. Resultados de parámetros hidráulicos – MTC.

Cálculo de Socavación en puentes

Se analiza como erosión potencial total, lo cual estimamos socavación producida en el cauce debido al estrechamiento y socavación local debido a la construcción de los estribos; parámetros para el cálculo de socavación general en el cruce.

Caudal de diseño

Tenemos caudal para un periodo de retorno de T=500 años.

Parámetros para cálculo de socavación

Parámetros para T=500 años.

Tabla 50Parámetros para cálculo de socavación

Prog.	Longitud	Caudales m3/2	Velocidad m/s	Tirante m	Gálibo m
04+560	L = 12	52.24	2.94	0.78	> 2.5
04+783	L = 10	12.98	1.89	0.39	> 2.6
07+216	L = 6	23.10	2.50	0.68	> 2.7
07+556	L = 14	40.37	2.53	0.61	> 2.8

Nota. Resultados de parámetros del cálculo de socavación.

Fuente: Manual de carretera: diseño geométrico (MTC) DG-2018.

Peso específico del suelo del cauce

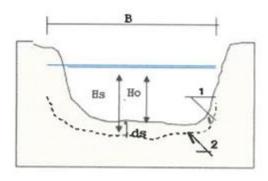
Peso específico 2.1 Tn/m3 (se obtuvo con el estudio de suelos).

Diámetro medio

Es el diámetro medio (mm) de los granos del fondo obtenido según la expresión dm=0.01 S (di)(pi).

Donde:

di = Diámetro en mm, de una fracción en la curva granulométrica de la muestra total que se analiza.


pi = Peso de esa misma porción, comparada respecto al peso total de la muestra; las fracciones escogidas no deben ser iguales entre sí.

A. Socavación general en el cauce

De acuerdo al manual de hidrología y drenaje se tiene la siguiente fórmula para suelos granulares. (El material analizado en el lecho del cauce es del tipo granular).

Método de Lischtvan - Levediev

Figura 11
Socavación general en el cauce

Nota. Material analizado en el lecho de cauce.

Fuente: Lischtvan - Levediev.

Hs =
$$\left[\frac{a H_0^{\frac{5}{3}}}{0.68b d_m^{0.28}} \right] 1/(1-e)$$

Donde:

 $\acute{a} = Qd/(Hm5/3 Be m).$

Qd = Caudal de diseño (m3/seg).

Be = Ancho efectivo de la superficie del líquido en la sección transversal.

m = Coeficiente de contracción.

Hm = Profundidad media de la sección = Área/Be.

x = Exponente variable que depende del diámetro del material.

dm = Diámetro medio (mm).

4.2.5. ESTUDIO DE GEOLOGÍA Y GEOTECNIA

Generalidades

El presente informe compila los trabajos de campo y gabinetes realizados en los meses de abril, mayo y junio del 2019.

Los trabajos de campo consistieron en el levantamiento de la información geológica regional y de detalle de la vía y su zona de influencia, en donde se analizaron cada una de las unidades lito estratigráficas que afloran a lo largo del eje de la carretera teniendo como apremio la observación y análisis de sus características geotécnicas y la obtención de datos.

Objetivos

realizar el estudio geológico - geotécnico, mediante mapeo geológico y geomorfológico, tanto regional como local de la zona de estudio, identificando los principales problemas geodinámicas y sus características, evaluando su magnitud y consecuencias sobre la vía, asimismo proponer medidas de mitigación y/o alternativas de solución.

El tamaño de los recortes y/o las inserciones de taludes se dimensionará en función del método de nivelación de los límites para los cuales se realizará la exploración geométrica.

Recomendar diseños necesarios para estabilizar taludes u otros fenómenos geodinámicos externos.

Geología regional

El control paleontológico, depósitos sedimentarios y formaciones precámbricas, que luego se desarrollan bajo la influencia de la presión y la temperatura, así como el vulcanismo, que ocurre en casi todas las alteraciones ya existentes dentro de la vía. Se puede decir que estos sedimentos son continuos, extendidos y paralelos a la cuenca, y por otro lado, los controles estructurales discretos siguen la misma dirección que las capas paleozoicas, por lo que estos afloramientos se encuentran dispersos en los controles extensos y sedimentarios. Es imposible. Pero estos depósitos influyeron a su vez en una serie de periodos que se dieron en la era Precámbrica. Estos depósitos siguen los contornos de los Andes, que a su vez incluyen los afloramientos

metamórficos representados por los esquistos lutaceos, que continúan aproximadamente en la misma dirección.

Geología local del área de estudio

a. Estratigrafía del entorno del proyecto

Cuatro formaciones geológicas se hallan en el área de estudio: primero los depósitos cuatemarios constituidos por depósitos aluviales, así como también la presencia de depósito regolítico. Además, encontramos nuevas formaciones de vida altamente erosionadas que representan rocas metamórficas.

Geomorfología

Las características geomórficas del área investigada son el resultado de procesos estructurales que contribuyeron a los procesos geomecánicas que llevaron a la formación del diseño actual del área. Entre los procesos tectónicos que impulsaron el proceso de modelado se encuentran probablemente las fallas masivas que crearon la cuenca del Huallaga, así como los diferentes pliegues que ya existen. Además, está la extensa erosión causada por los diferentes arroyos y ríos que ya existen, y las razones de las diversas unidades estratigráficas que llevaron a la formación del terreno actual.

Unidades geomorfológicas

En el área de estudio se identificó las siguientes unidades geomorfológicas:

• Montañas con laderas de moderada pendiente

A desarrollar en la primera parte del proyecto, el camino atravesará la parte inferior y superior de estas laderas, con cierto desnivel a medida que avanza el camino. Compuestas por grava, arena y limo, estas montañas tienen pendientes entre 15 y 30 grados y una

morfología ligera a moderada. Cabe señalar que casi todo está cubierto de esterilidad producto de la erosión de la gravedad y el movimiento de los vientos. Algunos arroyos son más efectivos cuando llueve.

Montañas con laderas de moderada pendiente a fuerte pendiente

Las laderas con pendientes superiores al 30% y vegetación templada son producto de formación reciente, lo que indica un fuerte modelado por agentes erosivos propios de la región dentro del sistema, que consiste en secuencias metamórficas del complejo del anacardo intercaladas con sedimentos alterados.

Meteorización

Fuera de los lechos de los ríos y en lugares expuestos a la intemperie, se forma una capa de suelo de hasta 3 m, las rocas metamórficas se convierten en suelo arcilloso de color marrón rojizo y ceniza arcillosa de color café claro.

Material de cobertura

Este material se encuentra en casi toda la parte de la vía vecinal en forma de terraplenes sobre los que se realizan actividades agrícolas, de 30 a 60 cm de espesor, y en ciertos lugares evoluciona con mayor espesor.

GEODINÁMICA EXTERNA

Los factores climáticos tienden a crear inestabilidad en la zona de estudio debido a la altura de los taludes ocasionada por la lluvia, escorrentía y viento.

Sectores con problemas de geodinámica externa

Generalizando el camino vecinal Marayzondor - Santo Domingo de Rondos – Huillaparac, se identificaron varias áreas inestables como la caída de rocas, derrumbes, etc., que

ya han afectado la vía, también se clasifican como moderadas, debido a que no existen procesos que puedan poner en peligro el tránsito de la vía, lo cual tampoco es importante.

c. Geodinámica interna

Por nuestro interés en la zona de Huánuco (donde está el camino vecinal). Marayzondor - Santo Domingo de Rondos - Huillaparac hay las siguientes descripciones. El área de trabajo se encuentra los afloramientos muy antiguos que están controlados por fallas producidas y los lineamientos de dirección SE v norte-sur. el afloramiento consiste principalmente en esquisto casi completamente meteorizado y sedimentos de color marrón a rojo, en su mayoría de composición arcillosa de color marrón rojizo. La razón de esto se debe al contenido de elementos de ferruginosa que pueden estar presentes en sus componentes.

Estructuras, el presente informe tiene como objetivo principal proponer el diseño de las estructuras y obras de arte en la creacion de la trocha carrozable: Marayzondor - Santo Domingo de Rondos - Huillaparac, el cual se efectuó en base al inventario vial a lo largo del tramo de la carretera y a los estudios de Hidrología - Drenaje y Geología - Geotecnia.

4.2.6. ESTRUCTURAS DE OBRAS Y ARTES

NORMATIVIDAD TÉCNICA UTILIZADA

Al analizar el trabajo planificado y determinar sus dimensiones, se tienen en cuenta las siguientes reglas técnicas de las empresas de transporte:

- Manual de diseño geométrico de carreteras del MTC (DG 2018).
- Manual de diseño de puentes del MTC.
- Especificaciones de la AASHTO LRFD, versión 2,012.

Mientras tanto, se revisaron las recomendaciones para los principales estudios de ingeniería del proyecto, topografía y trazado vial, hidrología e hidrodinámica, geología e ingeniería geotécnica, y la existencia de grietas físicas (burbujas).

a. Puentes

De acuerdo con la evaluación de campo, se está proyectando la construcción de cuatro puentes en las quebradas de Cuchara, Monopampa y Ramón Ragra, con el fin de atravesar los desniveles geográficos.

Tabla 51
Tramos

Tramo	Longitud	Dragrasiya	Coordenadas UTM WGS 84		Longitud del	
Tramo	de puente	Progresiva	Este	Norte	Puente	
Tramo 1	L=12M	04+560.00	370429	8861075	L=12	
	L=10M	04+783.00	370515	8861225	L=10	
Tramo 2	L=06M	07+216.00	367024	8861402	L=06	
	L=150	07+556.00	366819	8861200	L=15	

Nota. Medida de los puentes del tramo 1 y 2.

TRAMOI: Marayzondor - Santo Domingo de Rondos

TRAMOII: Marayzondor – Huillaparac

ALCANTARILLAS

Ubicación de las alcantarillas proyectadas

De acuerdo con la investigación de campo, se planea la construcción de una estructura de drenaje para evitar el hundimiento de la plataforma móvil y otras pérdidas de drenaje.

Tabla 52Alcantarilla tipo marco Tramo 1

Ítem	Prog.	Descripción
1	00+180	Alc. De alivio
2	00+470	Alc. De alivio
3	00+740	Alc. De alivio
4	02+260	Alc. De alivio
5	02+614	Alc. De alivio
6	03+950	Alc. De alivio
7	04+200	Alc. De alivio
8	06+040	Alc. De alivio
9	06+320	Alc. De alivio
10	06+585	Alc. De alivio
11	06+850	Alc. De alivio

Nota. Descripción de alcantarilla en el tipo de marco del tramo 1. Fuente: Manual de carretera: Diseño geométrico (MTC) DG-2018.

Tabla 53Alcantarilla tipo marco Tramo 2

Ítem	Prog.	Descripción
12	00+005	Alc. De Alivio
13	00+600	Alc. De Alivio
14	00+900	Alc. De Alivio
15	01+480	Alc. De Alivio
16	02+880	Alc. De Alivio
17	03+180	Alc. De Alivio
18	03+614	Alc. De paso
19	03+990	Alc. De Alivio
20	04+050	Alc. De paso
21	04+300	Alc. De Alivio
22	04+600	Alc. De Alivio
23	04+980	Alc. De paso

24	05+200	Alc. De Alivio
25	05+460	Alc. De Alivio
26	05+960	Alc. De Alivio
27	06+240	Alc. De Alivio
28	06+550	Alc. De paso
29	06+930	Alc. De paso
30	08+160	Alc. De Alivio
31	08+350	Alc. De Alivio
32	08+600	Alc. De Alivio
33	08+880	Alc. De Alivio

Nota. Descripción de alcantarilla en el tipo de marco del tramo 2.

Fuente: Manual de carretera: diseño geométrico (MTC) DG-2018.

4.2.7. SEÑALIZACIÓN Y SEGURIDAD VÌAL

4.2.7.1. SEÑALIZACIÓN VERTICAL

Señales verticales, como dispositivos instalados en vías o aceras, para controlar el tráfico, advertir o utilizar palabras o señales específicas para los usuarios.

las señales se clasifican en:

- Señales reguladoras o de reglamentación.
- Señales de prevención.
- Señales de información.

4.2.7.2. SEÑALES REGULADORAS O DE REGLAMENTACIÓN

Definición

Tiene como finalidad dar a conocer a los usuarios las restricciones, prohibiciones y/o permisos que regulan el uso de las vías y su incumplimiento, en contravención de las normas nacionales de tránsito. Además de otros estándares TCM.

Clasificación

Se clasifican en señales de:

- Prioridad.
- Prohibición.
- Restricción.
- Obligación.
- Autorización.

4.2.7.3. RELACIÓN DE SEÑALES REGLAMENTARIAS QUE SE UTILIZARAN EN EL PROYECTO

(R-14B) SEÑAL DOBLE SENTIDO DE TRÁNSITO

De forma y colores correspondientes a las señales prohibidas o restrictivas.

Se usará para indicar al conductor que circula por una vía de un solo sentido de circulación, el cambio a dos sentidos de circulación.

Generalmente es utilizada en el caso de la transición de una vía de calzados con separador central, a una vía de una calzada con tránsito en ambos sentidos.

Figura 12

Señalización

Nota. Señal de una vía calzada con tránsito en ambos sentidos. Fuente: Manual de carretera: diseño geométrico (MTC) DG-2018.

(R-16) SEÑAL PROHIBIDO ADELANTAR

Forma y color según señales de prohibido.

Esto se utiliza para señalar al conductor que está prohibido adelantar a otro vehículo, generalmente reduciendo la visibilidad. Las zonas de seguridad restringidas se configuran inicialmente.

Esta señal siempre debe mostrarse junto con la P-60, señal de prohibido adelantar.

Figura 13

Señal de prohibido adelantar

Nota. Señal de prohibido adelantar en las zonas restringidas. Fuente: Manual de carretera: diseño geométrico (MTC) DG-2018.

4.2.7.4. SEÑALES PREVENTIVAS

Su propósito es advertir a los usuarios de la vía sobre la existencia y naturaleza de peligros y/o eventos inesperados en o cerca de las vías.

Esta señal ayuda a los conductores a tomar las precauciones adecuadas para su propia seguridad, la seguridad de otros vehículos y peatones, tales como: Conduzca despacio o gire correctamente.

Figura 14
Señales preventivas

Nota. Señales preventivas para los conductores para que maniobren con cuidado.

Fuente: Manual de carretera: diseño geométrico (MTC) DG-2018.

Se utilizan para indicar curvas de radio de 40 a 300 m con un ángulo de reflexión menor a 45° y otras curvas de radio fluctúan de 80 a 300 m con un ángulo de deflexión superior a 45°.

(P-3A) SEÑAL CURVA Y CONTRA CURVA PRONUNCIADAS A LA DERECHA

Estos se utilizan para indicar la presencia de dos curvas en sentidos opuestos separadas por una sombra de menos de 60 metros y las características geométricas corresponden a las marcas que se muestran en las curvas utilizadas para el uso de símbolos (P-1).

SEÑALES INFORMATIVAS

Su función es informar a los usuarios de los principales puntos de interés, lugares turísticos, antiguos e históricos de la ruta, su ámbito de influencia, orientándolos y/o guiándolos para llegar a los principales destinos y servicios públicos de una manera posible.

Figura 15
Señales informativas

Nota. Señales que indican la proximidad la proximidad de un servicio público o destinos principales.

Fuente: Manual de carretera: diseño geométrico (MTC) DG-2018.

(I-18) SEÑAL DE LOCALIZACIÓN

Se utilizan para indicar proximidad a ciudades o lugares de interés como ríos, pueblos, etc.

(I-8) postes de kilometraje

Se utilizan para indicar la distancia desde el inicio de la carretera. La determinación del origen de cada camino está sujeta a las normas pertinentes establecidas por la Dirección General de Caminos.

El kilometraje varía de 1 km a 5 km, con números pares a la derecha e impares a la izquierda.

Está diseñado para identificar 18 km de hitos a lo largo de la ruta.

GUARDAVÍAS

Las barandillas son el elemento más eficaz y rentable de la seguridad de vehículos y peatones. Consisten en perfiles metálicos instalados a lo largo de los raíles del vehículo y que, gracias a su forma, resistencia y dimensiones, previenen o limitan los daños accidentales.

Figura 16
Guardavías

Nota. Seguridad vehicular y peatonal para disminuir daños en accidentes. Fuente: Manual de carretera: diseño geométrico (MTC) DG-2018.

PLAN DE SEÑALIZACIÓN Y PROCEDIMIENTO DE CONTROL DE TRÁNSITO DURANTE LA EJECUCIÓN DE OBRA

Objetivos

Reducir el impacto ambiental del transporte urbano en el área de inversión y prevenir actividades que dañen la infraestructura vial.

Medidas a Implementar

El subprograma de seguridad vial comprende básicamente las medidas a adoptar, a través de charlas de seguridad vial y señalización ambiental, para proteger la infraestructura vial del proyecto.

Etapas de Construcción

- Se instalan paneles de información temporales a lo largo de las carreteras para señalar a los usuarios de las carreteras adyacentes, indicando las actividades humanas o los factores ambientales que pueden causar problemas. Concéntrese en las señales de seguridad para los trabajadores y los usuarios de la vía adyacente.
- En particular, se prevé la instalación de carteles de prohibición de circulación de vehículos en la entrada a la obra.
- Prepare letreros para que sean visibles de día o de noche, utilizando reflectores o luces suficientemente grandes para garantizar la visibilidad.
- Completamente instalado a la altura y posición correctas para el ángulo de visión, teniendo en cuenta cualquier obstrucción cerca del objeto de peligro o señal, o si llegar al área de peligro presenta un peligro general.
- Para evitar degradar la validez de las etiquetas, evite usarlas demasiado en las inmediaciones y elimínelas cuando la situación ya no lo amerite.

• Se debe discutir la seguridad del tráfico y la importancia de las etiquetas ambientales. Se deberán dar charlas donde se detalla la importancia y respeto de las normas de seguridad y señalización vial, con frecuencia bimestral en cada uno de los centros poblados involucrados directamente con el proyecto, como son los centros poblados de Marayzondor - Santo Domingo de Rondos - Huillaparac del distrito de San Rafael; resultando un total de 6 charlas al año en cada centro poblado.

Etapa de Operación

- Durante la ejecución del proyecto, se instalarán señales para los usuarios de la vía en todos los tramos.
- Prepare letreros para que sean visibles de día o de noche, utilizando reflectores o luces suficientemente grandes para garantizar la visibilidad.
- Deben colocarse señales informativas o de advertencia en las carreteras en lugares peligrosos como aceras, cuevas cerradas, hoyos, puentes y áreas resbaladizas.
- Extremadamente simplificado, evitando detalles innecesarios para la comprensión y fabricado con materiales resistentes a los golpes, la intemperie y las influencias ambientales.
- En el caso de peligros generales en áreas de acceso peligroso, se recomienda instalar a una altura y ubicación correspondiente al ángulo de visión, teniendo en cuenta posibles obstáculos cerca de objetos peligrosos o marcados. hacer.

Tabla 54

Colores de Seguridad

Color	Significado	Indicaciones	
	Señal de prohibición	Compromiso peligroso	
Rojo	Peligro – alarma	Alto, parada, dispositivos de desconexión de emergencia y evacuación	
	Material y equipo de lucha contra incendios	Identificación y localización	
Amarillo	Señal de advertencia	Atención, precaución y verificación	
Azul	Señal de obligación	Comportamiento o acción específico, obligación de utilizar un equipo de protección individual	
Verde	Señal de salvamento o auxilio	Puertas, salidas, pasajes, material, puestos de salvamento o de socorro, locales	
	Situación de seguridad	Vuelta a la normalidad	

Nota. Estos colores referidos, serán utilizados principalmente, en las áreas auxiliares durante la etapa de construcción.

Fuente: Manual de carretera: diseño geométrico (MTC) DG-2018.

Si el color del sustrato al que se aplica la película protectora puede interferir con su percepción, se deben utilizar alternativas de contraste, enmarcado o color protector.

Tabla 55

Color de contraste

Color de contraste
Blanco
Negro
Blanco
Blanco

Nota. Apoyo con la identificación del contraste del color Fuente: Manual de carretera: diseño geométrico (MTC) DG-2018.

Por otro lado, a la hora de optimizar los servicios de transporte se aplican los siguientes criterios:

- El fácil acceso de los usuarios favorece el transporte público y de mercancías para reducir el impacto ambiental.
- 2. Reducir el impacto ambiental de los usuarios del transporte público en términos de tiempo de viaje.
- 3. Habilite una voz fácil de leer que los usuarios puedan interpretar fácilmente.
- 4. Fácil de implementar.
- 5. Minimizar el impacto ambiental del desvío del tráfico.
- Reducir el impacto de los métodos alternativos en el medio ambiente.
- 7. Minimice varios cambios que distraigan (directrices, reglamentos, etc.).
- 8. Minimice los impactos en las aceras.

Asimismo, hay aspectos que son relevantes al momento de definir los desvíos de tránsito:

 Que algunas de las vías afectadas por las faenas de construcción presentan un importante flujo de transporte público, como por ejemplo en las cercanías de los centros poblados y en especial en los primeros km del trazo del proyecto, en el centro poblado de Marayzondor - Santo Domingo de Rondos - Huillaparac.

 Que la red vial impactada presenta deficiencias geométricas, de conectividad, capacidad y estado de afirmación.

Durante la etapa constructiva, se aplicarán desvíos temporales a lo largo de gran parte de la carretera, utilizándose una alternancia entre la carretera existente y la carretera en construcción, todo ello dependiendo de los flujos de tránsito, condiciones de vialidad, estado de los afirmados, entre otros. Con estas consideraciones, se ha establecido que en el centro poblado de Marayzondor - Santo Domingo de Rondos - Huillaparac, son los puntos críticos en donde se deberá tener especial énfasis el subprograma de desvíos y señalización. El marcado ambiental conduce a la conciencia ambiental de los trabajadores de la construcción y de los residentes y es fundamental como herramienta de información visual para reducir el riesgo potencial para la integridad física del medio ambiente y el deterioro de los factores ambientales debido al impacto de las diversas actividades de construcción, en el proyecto. En razón a las características del tipo del proyecto que constituye la construcción de una carretera, las señalizaciones ambientales serán constantemente trasladas a los diferentes frentes de obra, teniendo en consideración las actividades que se desarrollarán y las áreas donde se desarrollarán dichas actividades. La cantidad y ubicación de las señales serán cada 5 km y aproximadamente a 200 m antes de cada ámbito sensible.

4.2.8. EVALUACIÓN SOCIOAMBIENTAL

4.2.8.1. DESCRIPCIÓN DEL PROYECTO

Datos generales del proyecto

Nombre del proyecto: "Construcción del camino vecinal Marayzondor - Santo Domingo de Rondos - Huillaparac, distrito de San Rafael - Ambo - Huánuco".

• Zonificación: Zona rural.

Distrito: San Rafael.

• Provincia Ambo.

• Departamento: Huánuco.

Tiempo de vida útil del proyecto: 10 años.

• Situación legal: Via inexistente.

Características del proyecto

Actualmente se observó las existencias de caminos de herraduras, siendo este el medio por donde con acémilas, cargando, los beneficios del proyecto realizan el transporte de sus productos, es por ello la gran la necesidad la creación de la trocha carrozable, por la misma condición no se encuentra ninguna de sus respectivas obras de arte.

Tabla 56

Características actuales de la vía

Descripción	No existe
Red vial	Camino de herradura
Categoría	No existe
Orografía	No existe
Tipo de pavimento	No existe
Ancho de calzada	No existe
Ancho de bemas a cada lado	No existe
Pendiente máxima	No existe
Ancho y altura de cunetas	No existe
Velocidad directriz	No existe
Obras de drenaje sobre el ancho y el mínimo	No existe
Radios en curvas horizontales y de vuelta	No existe
Bombeo de calzada	No existe
Peralte mínimo	No existe
Peralte máximo	No existe
Sub base	No existe
Ancho de derecho de vía	No existe
Obras de arte	No existe

Nota. Descripción de la trocha carrozable de la vía actual sin proyecto.

4.2.8.2. MONITOREO DE LA CALIDAD DEL AIRE

El propósito de este monitoreo es producir información confiable, comparable y representativa para monitorear la calidad del aire en las áreas afectadas por el proyecto y asegurar que las actividades del proyecto y las medidas de manejo ambiental implementadas cumplan con los objetivos de salud, proteger a la población local y la calidad ambiental en el área del proyecto.

Considerando la envergadura del proyecto, este programa de monitoreo ha sido propuesto a escala local, siendo señalado por el protocolo de monitoreo y calidad del aire de DIGESA.

a. Parámetros

Se propone cumplir con los estándares enumerados en las Normas Nacionales de Calidad del Aire emitidas por la Ordenanza Suprema N° Descrito en el cuadro 003-2017-MINM.

b. Estaciones de monitoreo

Durante la etapa constructiva, se deberá realizar un monitoreo de gases cerca al anexo de Maroyzondor, debido a que el uso de insumos y componentes nocivos además de las partículas de polvo podrían afectar la salud de los pobladores.

c. Frecuencia de muestreo

En la etapa, los monitoreos de calidad de aire se realizarán trimestralmente, la ubicación o instalación de los equipos de muestreo serán cerca al anexo de Marayzondor durante las 25 horas; estándares a tener en cuenta, los resultados de los monitoreos de la calidad de aire deben compararse con los estándares nacionales de calidad ambiental de aire (DS N°074-2011-PCM) y los estándares de calidad de aire (DS N° 003-2008).

4.2.8.3. MONITOREO DE NIVELES DE RUIDO

El objetivo es verificar que los niveles de ruido en las zonas colindantes a los frentes de trabajo, se encuentran dentro de los estándares de calidad correspondientes, lo cual permitirá garantizar que las obras a ejecutar no ocasionan molestias moderadas a la población residente local.

4.2.8.4. MONITOREO DE LA CALIDAD DEL AGUA

Se realizará el monitoreo de la calidad del agua durante las actividades de construcción en los cursos de agua que podrían verse contaminados o afectados por la ejecución de obras.

4.2.8.5. MÉTODO DE MUESTREO

Como propuesta se aplicará los lineamientos del "Protocolo sobre el Monitoreo de las Aguas Superficiales Continentales en el Perú" de la Dirección General de Calidad Ambiental del Ministerio del Ambiente. El número de oficio 506-2010-DGCAVMGA/MINAM se dirigió a la Autoridad Nacional del Agua.

4.2.8.6. MEDIDAS AMBIENTALES-CALIDAD DEL SUELO

Las medidas ambientales que se han tomado para reducir la afectación de la calidad del suelo son:

Los puntos de acceso existentes se utilizan en el área del proyecto para minimizar el impacto en la calidad del suelo y los riesgos de contaminación asociados con el movimiento de personas, maquinaria y/o vehículos.

Disponer adecuadamente los residuos sólidos generados durante la operación. La tierra orgánica recuperada de la remoción de tierra para la instalación de sistemas auxiliares se almacena convenientemente en un lugar apropiado para su uso posterior en la reforestación y restauración de áreas degradadas.

Una vez finalizado el trabajo, el contratista es responsable de reparar cualquier daño. Esto incluye, entre otras cosas, la limpieza del suelo contaminado con lubricantes usados y combustible derramado.

Instale inodoros y bañeras en fachadas de edificios comerciales y fábricas. Control de calidad del suelo.

Control de la posible afectación de la fauna Local y su hábitat

Está diseñado para proporcionar un medio para proteger la vida silvestre cerca de las carreteras e instalaciones relacionadas. Las actividades e intervenciones en el área se limitan estrictamente a las especificadas en la documentación del proyecto para evitar perturbar el hábitat de las aves que puedan habitar el área. Las actividades deben realizarse estrictamente en las áreas especificadas en el plan de ingeniería para evitar impactos.

Se realizan reuniones mensuales de una hora de duración para sensibilizar sobre temas de protección animal y vegetal.

4.2.9. PRESUPUESTO Y PLAZO DE EJECUCIÓN

Tabla 57Resumen de metrados

ITEM	DESCRIPCIÓN	UND.	METRADO
1	Trabajos preliminares		
1.01	Movilización y desmovilización de equipo	GLB	1
1.02	Topografía y georreferenciación	KM	16.75
1.03	Campamento de obra	GLB	1
1.04	Mantenimiento de tránsito y seguridad vial	GLB	1
2	Movimientos de tierras		
2.01	Excavación de material suelto	m3	181,993.38
2.02	Excavación En roca fracturada	m3	38,570.48
2.03	Excavación en roca fija	m3	4,507.06

2.04	Perfilado y compactado en zona de corte	m2	84,967.54
2.05	Terraplenes con material propio	und	2,744.58
2.06	Conformación y acomodo d	le DME	
3	Afirmados		
3.01	Afirmados	m3	17,087.04
4	Cunetas		
4.01	Acondicionamiento de cuneta de tierra	m	17,622.40
5	Puente tipo losa L=6M		
5.01	Trabajos preliminares		
5.01.01	Desbroce y limpieza de terreno	НА	0.1
5.01.02	Topografía y georreferenciación	m2	100
5.01.03	Falso puente base y entablo tipo 1	und	1
5.02	Subestructuras		
5.02.01	Excavación para estructuras en material común seco	m3	373.07
5.02.03	Eliminación de material excedente manual Dprom=30m	m3	26.56
5.02.04	Relleno con material seleccionado	m3	350.93
5.02.05	Concreto ciclópeo 1:12+30% P.G	m3	21.24
5.02.06	Concreto fc=210 kg/cm2 en estribos	m3	156.6
5.02.08	Encofrado y desencofrado	m2	235.83
5.03	Superestructura		
5.03.01	Concreto fc=280 kg/cm2 en super estructura	m3	19.83

5.03.02	Encofrado y desencofrado	m2	53.28
5.03.03	Acero de refuerzo	kg	1,862.41
5.04	Varios		
5.04.01	Juntas de dilatación	m	22.6
5.04.02	Apoyo de Neoprene Shore 70. de 0.50x0.22x0.05 M	und	2
5.04.03	Tubería de drenaje PVC SAP de 3"	m	46.5
5.04.04	Fabricación y colocación de barandas metálicas	m	12
5.04.05	Prueba de carga de superestructura	und	1
6	Puente tipo losa L=10M		
6.01	Trabajos preliminares		
6.01.01	Desbroce y limpieza de terreno	НА	0.15
6.01.02	Topografía y georreferenciación	m2	150
6.01.03	Falso puente base y entablado tipo 2	und	1
6.02	Subestructuras		
6.02.01	Excavación para estructuras en material común seco	m3	470.58
6.02.03	Eliminación de material excedente manual Dprom=30m	m3	41.63
6.02.04	Relleno con material seleccionado	m3	435.89
6.02.05	Concreto ciclópeo 1:12+30% P.G	m3	21.24
6.02.06	Concreto fc=210 kg/cm2 en estribos	m3	193.03
6.02.08	Encofrado y desencofrado	m2	339.62

6.03	Superestructura		
6.03.01	Concreto fc=280 kg/cm2 en super estructura	m3	35.43
6.03.02	Encofrado y desencofrado	m2	86.23
6.03.03	Acero de refuerzo	kg	3,795.25
6.04	Varios		
6.04.01	Juntas de dilatación	m	35.9
6.04.02	Apoyo de Neoprene Shore 70. de 0.50x0.22x0.05 M	und	2
6.04.03	Tubería de drenaje PVC SAP de 3"	n	54.7
6.04.04	Fabricación y colocación de barandas metálicas	n	20
6.04.05	Prueba de carga de superestructura	und	1
7	Puente tipo losa L=12M		
7.01	Trabajos preliminares		
7.01.01	Desbroce y limpieza de terreno	НА	0.15
7.01.02	Topografía y georreferenciación	m2	150
7.01.03	Falso puente base y entablado 3	und	1
7.02	Subestructuras		
7.02.01	Excavación para estructuras en material común seco	m3	1014.51
7.02.03	Eliminación de material excedente manual Dprom=30m	m3	110.54
7.02.04	Relleno con material seleccionado	m3	922.4
7.02.05	Concreto ciclópeo 1:12+30% P.G	m3	24.41

7.02.06	Concreto fc=210 kg/cm2 en estribos	m3	242.85
7.02.08	Encofrado y desencofrado	m2	341.73
7.03	Superestructura		
7.03.01	Concreto fc=280 kg/cm2 en super estructura	m3	27.68
7.03.02	Encofrado y desencofrado	m2	146.82
7.03.03	Acero de refuerzo	kg	5,478.57
7.04	Varios		
7.04.01	Juntas de dilatación	m	45.6
7.04.02	Apoyo de Neoprene Shore 70. de 0.50x0.22x0.05 M	und	2
7.04.03	Tubería de drenaje PVC SAP de 3"	m	54
7.04.04	Fabricación y colocación de barandas metálicas	m	24
7.04.05	Prueba de carga de superestructura	und	1
8	Puente tipo losa L=15m		
8.01	Trabajos preliminares		
08.01.01	Desbroce y limpieza de terreno	НА	0.2
8.01.02	Topografía y georreferenciación	m2	200
8.01.03	Falso puente base y entablo tipo 4	und	1
8.02	Subestructuras		
8.02.01	Excavación para estructuras en material común seco	m3	1882.93
8.02.03	Eliminación de material excedente manual Dprom=30m	m3	109.42

8.02.04	Relleno con material seleccionado	m3	1,791.74
8.02.05	Concreto ciclópeo 1:12+30% P.G	m3	36.07
8.02.06	Concreto fc=210 kg/cm2 en estribos	m3	320.49
8.02.08	Encofrado y desencofrado	m2	658.65
8.02.09	Acero de refuerzo	kg	1,474
8.03	Superestructura		
8.03.01	Concreto fc=280 kg/cm2 en super estructura	m3	36.03
8.03.02	Encofrado y desencofrado	m2	191.52
8.03.03	Acero de refuerzo	kg	6,939.26
8.04	Varios		
8.04.01	Juntas de dilatación	m	57
8.04.02	Apoyo de Neoprene Shore 70. de 0.50x0.22x0.05 M		2
8.04.03	Tubería de drenaje PVC SAP de 3"	m	79.2
8.04.04	Fabricación y colocación de barandas metálicas		30
8.04.05	Prueba de carga de superestructura	und	1
9 Alcantarillas			
9.01	Excavación no clasificada para estructuras	m3	1,594.25
9.02	Relleno para estructuras con material propio	m3	229.13
9.03	Solado de concreto fc=140kg/cm2(E=10cm)	m3	73.57
9.04	Encofrado y desencofrado	m2	1,578
9.05	Concreto fc=210 kg/cm2 en estribos	m3	299.79

9.06	Acero de refuerzo		20,397.46		
9.07	Concreto ciclópeo FC=175 kg/cm2+70%P.M para emboquillados		64.6		
10	Señalización y seguridad vial				
10.01	Señales preventivas		214		
10.02	Señales reglamentarias	und	8		
10.03	Señales informativas	m2	6.95		
10.04	Guardavías metálicos		560		
10.05	Postes de kilometraje	und	18		
11	Transporte				
11.01	Transporte de material para afirmado D<=1 km	МЗК	14,388.73		
11.02	Transporte de material para afirmado D>=1 km		17,818.92		
11.03	Transporte de material excedente D<=1 km		202,561.30		
11.04	Transporte de material excedente D>=1 km		1,014,626.11		
12	Plan de manejo Ambien	tal			
12.01	Estrategia de manejo Ambiental				
12.01.01	Programa de manejo Ambiental para el medio físico				
12.01.01.01	Subprograma de manejo de área	Subprograma de manejo de áreas auxiliares			
12.01.01.01.01	Manejo de botaderos		39,960.09		
12.01.01.01.02	Manejo de campamentos y patio de máquinas		1,869.33		
12.01.01.01.03	Manejo de canteras		13,118.30		
12.01.01.02	Subprograma de protección de los Recursos Naturales				
12.01.01.02.01	Retiro y almacenamiento de Top Soil	m2	800		
12.01.01.02.02	2.01.01.02.02 Protección de Top Soil		800		

12.01.01.03	Sub programa de control de material particulado, emisiones, ruido y vibraciones			
12.01.01.03.01	Riego para control de volvo	m2	70,000	
12.01.01.03.02	Toldo para Volquete	m2	920	
12.01.01.04	Sub programa de control de explosivos			
12.01.01.04.01	Instalación de polvorín	und	1	
12.01.01.05	Subprograma de señalización Ambiental			
12.01.01.05.01	Señalización Ambiental	und	10	
12.01.02	Programa de manejo Ambiental para el medio Biológico			
12.01.02.01	Sub programa de de revegetación			
12.01.02.01.01	Recuperación y revegetación de de áreas afectadas	m2	3,500	
12.02	Plan de seguimiento y control			
12.02.01	Monitoreo de Aire	und	2	
12.02.02	Monitoreo de calidad de agua	und	2	
12.02.03	Monitoreo de vibraciones	und	2	
12.02.04	Monitoreo de ruido	und	2	
12.03	Plan para la vigilancia y control COVID			
12.03.01	Plan para la vigilancia y control COVID-19	mes	3	

Nota. Descripción de los metrados que tiene el proyecto a ejecutar.

CONCLUSIONES

- De los estudios de realizar un análisis de vulnerabilidad en la construcción del camino vecinal para mejorar la calidad de vida de los pobladores en el centro poblado Marayzondor Santo Domingo de Rondos Huillaparac, distrito de San Rafael Ambo Huánuco; Se puede decir que las estructuras consideradas en el estudio para determinar el tipo de topografía de este suelo se clasifican como suelo estándar, y también representan áreas como materiales semirocosos y rocosos formados por depósitos de grava con presencia de piedras. También cerca de los bordes de las ciudades cercanas.
- ➤ El estudio de impacto ambiental del proyecto de construccion del camino vecinal Marayzondor Santo Domingo de Rondos Huillaparac, distrito de San Rafael Ambo Huánuco; que la falta de la red de alcantarillado es la principal causa causa de contaminación, falta de tratamiento de agua en el centro poblado. en este sentido según la identificación y evaluación ambiental realiza a la etapa de construcción y operación del proyecto Camino Vecinal para mejorar la calidad de vida en el centro poblado Marayzondor Santo Domingo de Rondos Huillaparac, distrito de San Rafael Ambo Huánuco; hay efectos negativos que mitigan y contrarrestan sus efectos; esto sugiere el Plan de Gestión Ambiental, además de que una vez finalizado e iniciado, el proyecto tendrá un impacto positivo en el medio ambiente y en la propia población, por lo que el proyecto es ambientalmente sostenible.
- Con respecto al estudio topográfico podemos mencionar que el centro poblado Marayzondor Santo Domingo de Rondos Huillaparac, distrito de San Rafael Ambo Huánuco presenta un camino desalineado. La topografía del área del proyecto es variada, con áreas sanitarias de diferentes vertientes. El sitio se caracteriza por la erosión, aguas residuales, vegetación, vida silvestre, etc., sin embargo, es posible llevar a cabo el proyecto sin problemas.

RECOMENDACIONES

- Se recomienda tener en cuenta la planificación de las obras, ya que se ha demostrado una deficiencia y se han presentado nueve solicitudes de prórroga del plazo de tramitación, de las cuales 5 han sido aprobadas, lo que lleva a que este proyecto aún no se haya completado.
- Se recomienda revisar la documentación técnica, ya que se han identificado algunas deficiencias que han llevado a la implementación de medidas importantes.
- Se recomienda capacitar a los residentes para aumentar la conciencia de la gestión y el mantenimiento después de que el equipo técnico haya completado el proyecto.

REFERENCIAS BIBLIOGRÁFICAS

- Chumacero y Aguilar (2018). "Mejoramiento del Camino Vecinal Utcurarca Cerro San Pablo, Distrito de Alberto Leveau, Provincia de San Martín.".

 [Tesis de Licenciatura]. Universidad Nacional de San Martín.
- Educalingo. (2022) *Alcantarilla* [en línea]. Disponible en https://educalingo.com/es/dic-es/alcantarilla
- Estacio y Porta (2021). "Propuesta de mejora del camino vecinal Huamangaga Yaca, según Norma diseño geométrico 2018, Huánuco 2021". [Tesis de Licenciatura]. Universidad César Vallejo.
- Esterlina, D. (2015, abril 27). Cubicación de Tierras. https://prezi.com/9r4phnubkpf-/cubicacion-de-tierras/
- Garces y Jordan (2022). "Mejoramiento de Camino Vecinal previa Evaluación de la Condición de la vía en la Quebrada Honda Selva Alegre Sigasiato Yuveni Chuanquiri, Distrito de Vilcabamba, Provincia de Convención, Departamento de Cusco, 2022". [Tesis de Licenciatura]. Universidad César Vallejo.
- Gestión (2019, julio 24). INOS. Startup Guide. https://www.ionos.es/startupguide/gestion/los-gastos-generales/
- Gresslin, J. (2019). "Análisis de la geometría del trazado en relación con la seguridad vial de caminos vecinales de la provincia de Pachitea". [Tesis de Licenciatura]. Universidad de Hermilio Valdizan].
- Hernández et al. (2014). Metodología de la investigación. 6a ed. México D.F.: Mac Graw Hill.
- Medina & Sevillano (2018). Bases teóricas para la rehabilitación del camino vecinal tramo San Fernando-Trapiche-Arcay-Alpamarca, distrito de Parcoy, Pataz La Libertad 2018.
- Ministerio de Vivienda (2014). Reglamento Nacional de Edificaciones. Lima: Grupo Universitario.
- Mozombite, C. (2018). "Mejoramiento del camino vecinal (Desde el centro poblado San José hasta el caserío San Juan), A.H ampliación San José

- Il etapa, distrito de Yarinacocha, provincia de coronel Portillo, región Ucayali". [Tesis de Licenciatura]. Universidad de Huánuco.
- MVCS. (2011). Metrados para obras de edificación y habilitación urbana. Lima: Página web del MVCS, 2011. pág. 154, Norma Técnica.
- Neurochispas (2022). Ángulo de inclinación y pendiente Fórmula y Ejercicios. https://www.neurochispas.com/wiki/angulo-de-inclinacion-y-pendiente-formula-y-ejercicios/#11-vease-tambien
- Ortiz, N. (2022). Cingenieria https://www.cingenieria.pe/articulos/en-queconsiste-un-estudio-de-canteras/
- Ramírez y Vicente (2005). Los presupuestos, sus objetivos e importancia. Revista Cultural Unilibre.
- Reátegui y Alvarado (2021). "Estudio definitivo del mejoramiento del camino vecinal CC.PP. San Juan de Talliquihui CC.PP. Machu Picchu, L= 18.833 Km., distrito de Santa Rosa, provincia de El Dorado San Martín". [Tesis de Licenciatura]. Universidad Nacional de San Martín.
- San-Jaime et al. (2007). Precios óptimos en el transporte interurbano por carretera. *Revista de Economía Aplicada*, *15*(45), 155-182.
- Santiago, S. (2019). "Eficiencia del modelo de gestión de mantenimiento rutinario en el camino vecinal, tramo puente Quipas Yanas, Dos de Mayo 2018". [Tesis de Licenciatura]. Universidad Nacional Hermilio Valdizan.
- Velásquez, C. (2015). Espacio público y movilidad urbana. Sistemas Integrados de Transporte Masivo (SITM).

COMO CITAR ESTE TRABAJO DE INVESTIGACIÓN

Suarez Damazo, B. (2023). Análisis de vulnerabilidades en la construcción del camino vecinal Marayzondor - Santo Domingo de Rondos - Huillaparac, distrito de San Rafael - Ambo – Huánuco [Trabajo de suficiencia profesional, Universidad de Huánuco]. Repositorio Institucional UDH. http://...

ANEXOS

ANEXO 1
MATRIZ DE CONSISTENCIA

PROBLEMA	OBJETIVOS	VARIABLES	DIMENSIONES	INDICADORES	METODOLOGÍA
Principal	General	Independiente		Estrategia de manejo	Métodos
¿En qué medida la construcción del camino vecinal permite mejorar la calidad de vida en Marayzondor - Santo Domingo - Huillaparac, distrito de San Rafael - Ambo – Huánuco, 2022?	Demostrar si la construcción del camino vecinal permite mejorar la calidad de vida en Marayzondor - Santo Domingo - Huillaparac, distrito de San Rafael - Ambo – Huánuco,	Construcción de camino	Estudio de suelo Estudio de impacto ambiental	ambiental Línea base ambiental y social	Tipo: Aplicada Nivel:
	2022.	vecinal	Levantamiento de estudio	Metrados (m ¹ , m ² , m ³) Costos unitarios	Descriptivo
	Específicos	Dependiente	topográfico	Presupuesto (S/.)	Diseño:
			Costo y presupuesto	Cronograma de obra	No experimental
	 Analizar si los estudios de impacto ambiental del proyecto construcción del camino vecinal permite mejorar la calidad de vida en Marayzondor - Santo Domingo de Romdos - Huillaparac, distrito de San Rafael - Ambo – Huánuco, 2022. 				Técnicas
	 Demostrar si los estudios de levantamiento topográfico del proyecto construcción del camino vecinal permite mejorar la calidad de vida en Marayzondor - Santo Domingo de Romdos - Huillaparac, distrito de San Rafael - Ambo – Huánuco, 2022. 	Calidad de vida	Transitabilidad	Trabajos preliminares Movilización,	
	 Realizar el presupuesto de la construcción del camino vecinal para mejorar la calidad de vida en Marayzondor - Santo Domingo de Romdos - Huillaparac, distrito de San Rafael - Ambo – Huánuco, 2022. 		Comercialización	desmovilización de equipos	Análisis documental Tecnología de vigilancia

ANEXO 2
EVIDENCIAS

Se tiene el corte de material en terreno natural con maquinaria en el tramo I

Se tiene corte de terreno en el tramo de Huillaparac en la apertura de la trocha y se tiene el perfilado de la calzada con motoniveladora

se tiene la ubicación del puente en el tramo I, Marayzondor, y el corte de terreno en roca suelta.

Se tiene el talud el cual se realizará el corte en roca fracturado, y se tiene el corte en terreno natural con maquinaria en tierra suelta

Se tiene el corte de terreno en curvas en el tramo I, Marayzondor, también se tiene el carguío y trasporte de material de afirmado

Se tiene el material clasificado para el afirmado de la vida de las dos canteras, para los dos tramos.

Se tiene la preparación del material afirmado en la carta el cual se utilizó en el afirmado de la vía.

Se tiene la visita inopinada de las autoridades de la Municipalidad Distrital de San Rafael, durante la ejecución de la obra.

Se tiene la colocación de afirmado en el tramo I, Marayzondor, y la limpieza de talud.

Se tiene el compactado del afirmado en la vis en el tramo II, Huillaparac.

MUNICIPALIDAD DISTRITAL DE SAN RAFAEL

PROVINCIA DE AMBO- REGION HUANUCO DEL RESISTEMBRE DE PORT. 2004 AÑOS DE PORPRIADADA

RUC: 20200097357 Trobajando para 8...

CONTRATO DE OBRA Nº 001-2021-MDSR/A

CONTRATACIÓN PARA LA EJECUCIÓN DE LA OBRA "CONSTRUCCIÓN DEL CAMENO VECINAL MARAYZONDOR - SANTO DOMINGO DE ROMDOS - HUGILIAPARAC, DESTRITO DE SAN BAPAEL - AMBO -HUÁNUCO"

Corete por el presente decumento, le contratación para la ejecución de la obra "Construcción del Caretro Vectral Managametr - Sonto Domingo de Roados - Ruillagamet, Distrito de San Rafael - Ambo - Huámuco", que celebra de una parte MUNICIPALIDAD DISTRIFIZAL DE SAN RAFAEL, en adelante LA ENTIDAD, con RUIC Nº 20200197357 con domicilo legal en Place de Avenas SIM - San Rafael - Ambo - Huámuco, representada por el señor Acaste: 2001. SIMILI CRUZ GUTTERREZ, identificado con DNS Nº 40845732, y de otro parte CONSORCIO VIAL SAN RAFAEL, quien se encuentra Conformado por las siguientes engresas:

CONSTRUCTORA JESUS ARIGO S.R.L. - PARTICIPACION 80%, CON RUC N° 20447999840, Inscrito en la Partica Bectrónica N° 1004659, Asiento 50006 del Registro de Personas Jurídicas de la Oficina Registral de Hulman, con domicilio legal en CALLE CLEMENTE PARRAGA N° 166 - URBANIZACION JACARANDA — SAN BORJA - LIMA, debidamente representado por su Gerente General THENCERA PASTOR MIGUEL, Identificado con DNE Nº 22507270.

EMPRESA CONSTRUCTORA SAN MARTEN DE PORRAS S.C.R.L.* PARTICIPACION 18% CON RUC H°
20328990494 Înscita en la Partida Electrónica N° 11079003, Asiento A0001 del Registro de Personas Juvidicas de la Oficine Registrar de Hudrinco, con domicilio legal en EDIFECTO N° AL DPTO 101 C.M. • POMAYI 2 AMARELIS-HUANIUCO, debidamente representado por su General GONZALES AGUIERE, JORGE LUIS ; liberáficade con CNI N° 22519300. Cen demetrio legal del Cornorrio en JR. DAMASO BERAUM N° 845—OFFICINA SIR PEDO 2015-PROVINCIA Y DEPARTAMENTO DE HUANIUCO, debidamente representado por su Representante Legal Común del Consorcio, Señor: JOE LEE MARTES. MERCADO, Identificado con DMI N° 43775441, a quien en adelante se la decominará EL CONTRATISTA en los términos y condiciones siguientes:

CLÁUSULA PRIMERA: ANTECEDENTES

Con Sicha IA de Diciembre del 2020, el comitó de selección adjudicó la buena pro de la LICETACION PUBLICA.

Nº 001-2020-MIDGR/CS — IRA CONNOCATORIA para la contratación de la ejecución de la dora

"Construcción del Camino Vacina Planayemotor - Sento Denringo de Rombio - Huillagenco, Dictrito de San Rabel Ambo - Huillagenco", el CONSORCIO VIAL SAN RAFAEL (CONSTRUCTORA 385US AMIGO S.R.L. — EMPRESA

CONSTRUCTORA SAN MARTIN DE PORRAS S.C.R.L.), cuyos debales e Vigorio constan en les documentos.

Con fecha (8: de Sirero del 3621, se recepciond en mesa de partes la CARTA N° 61-2621-CVSR; con registro de tramite documentario N° 560 y con fecha 13 de ll'anno la Unidad de Logistica y Control patrimiental con registro N° 651 recepciona los documentos para la formalización del contrato

Con fecha 12 de Enera del 2001, mediante CARTA Nº00-2001-PESRJULCPYCVL; el Jefe de la Unidad de Logistica y Cantrol patrimonial comunica al prevendor adjudicado observaciones entetentes en los documentos presentados, y notifico al CONSDECIO SACOR, subsonar requisitas para el perfeccionamiento del contravido al comercido al contrataciones del Catado.

Can fecha 15 de Enero del 2021, Mediante CARTA Nº 02-2021-CVSR subsano los requisitos para perfeccionar el contrato ante la Entidad, Ingresando la carta amba mencionado por mesa de partes mediante registro Nº 108 y recepcionado en la Unidad de Logistica y Control patrimental con registro Nº 083.

CLÁUSULA SEGUNDA: OBJETO

El presente contrato tiene por objeto ejecución de la obra "Construcción del Camimo Vecinal Manayondor - Santo
Domingo de Rondos - Huillaparac, Distrito de San Rafael - Ambo - Huilmuco", Conforme a lo establecido en los
bases y el Expediente Técnico aprobado por LA ENTIDAD.

CLÁUSULA TERCERA: MONTO CONTRACTUAL El monto total del presente contrato asciende a 5/ 10°491,802.92 (DIEZ MILLONES CUATROCIENTOS NOVENTA Y UN MEL OCHOCIENTOS DOS CON 93/100 SOLES), que incluye todos los impuestos de Ley.

fiste mento comprende el costo de la ejecución de la obra, todos los tributos, segunos, transporte, impecciones, pruebas y, de ser el cisso, los costos laborales conforme la legislación vigente, así como cualquier otro concepto que pueda tener incidencia sobre la ejecución de la prestación materia del presente contrato.

CLÁUSULA CUARTA: DEL PAGO

LA ENTIDAD se cóligo a pagar la contreprestación a EL CONTRATESTA en SOLES, en períodos de valorización mercuales conforme a la previato en la sección específica de las bases. Asimismo, LA ENTIDAD a EL CONTRATESTA, según corresponda, se obligan a pagar el monte correspondiente al saldo de la liquidación del contrato de obra, en el plazo de 15 días calendario, computados desde el día siguiente del consentimiento de la liquidación.

Plaza de Armas ain – San Rafeel - Arebo – Huánoco www.munisamafael.gob.ps; munisamafael2121@gmail.com

MUNICIPALIDAD DISTRITAL DE SAN RAFAEL

PROVINCIA DE AMBO- REGION HUANUCO THE RESIDENCE OF THE THE LAST BE PARTED BY

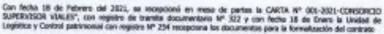
> RUC: 20200097357 Trobajando para S...

SERVICIO DE COMSULTORIA DE GERA CONTRATO Nº 001-2021-MDSR/A

CONTRATACION DE SERVICEO DE CONSULTORIA DE GERA PARA LA SUPERISSIÓN. DE LA OBRA "CONSTRUCCION DEL CAMINO VECTHAL MARAYZONDOS-SANTO DOMINGO DE KONDOS — HUILLAPARAC-DISTRITO DE SAN RAPARI-AMBO-HUANUCO"

Conside per el presente documento, Cantratación de servicio de Cansultoria de obra para la Supervisión de la Obra
"Construcción del Comino Vecinal Manaçocodor - Santo Domingo de Rondos - Huillagaras: Distrito de San Rusiad Provincia de Ambio - Departamiento de Huánuco", que celebra de una porte MUNICIPALIDAO DESTRITIAL DE
SAM RAFAEL, en acisante LA ENTEDAD, coe BUC Nº 20200197357 con dominito legal en Rusa de Armas
SIN - Distrito de San Rafael - Provincia de Ambio - Departamiente Instituco, representada por el señor Alcude:
JOEL SEMEI CRUZ GUTTERREZ, identificado sen DNI Nº 46845732, y de otra parte CONSONCIO
SUPERVISOR VIALES

PALACIOS CAMPOS, LEHIR PORFERIO (PARTICIPACION 70 %)
Debidemente identificado (em DNE Nº 40468121, CON RUC Nº 30464681210, con domicilo legal en
AV. LOS OLIVOS Nº 347-6-200 PISO CAYMUNYNA BAJA-PILLOD MARCA-HUMNUCO.


MARTIREZ QUESPE, JULIO VICTOR (PARTICIPACION 30 %)
Debicamento identificado con DRE Nº 22508053, Can RUC Nº 30225080530 con domicilo legal en
JRL BOLLIVAR Nº 290-HUANUCO.

Debatamento representado por se Representante Legal Camian del Comorcio, Señor. WILSON SAYNER RIVERA OSCRIDI Identificado em DRE MY 75654607, con domento legal del Comorcio en AV. LOS OLIVOS NY 147-9-200 PISO CATRILAYNA BALA - PILLOO MARCA - HUANNICO, o quien en adelanto as la denominado EL CONTRATESTA en los terminos y condiciones siguientes:

CLÁUSULA PRIMERA: ANTECEDENTES

Con fische 06 de Febrero del 2001, el corritó de selección, adjusted la buena pro de la CONCLESO PUBLICO Nº 063-2020-HDSR/CS para la contratacción de Servicos de Consultorio de obre para la Supernisión de la Obra "Caretrucción del Carriero Vecinal Pravaycender - Sarte Domingo de Rondes - Huillagarde Distrito de San Rafesi - Prosincia de Ambo - Región Huillagarde Constanto Vecinal Positivo de San Rafesi - Prosincia de Ambo - Región Huillagarde Consciona Supernisión VIALES, cuyos detallos e importe constant en los documentos integrantes del presento contra

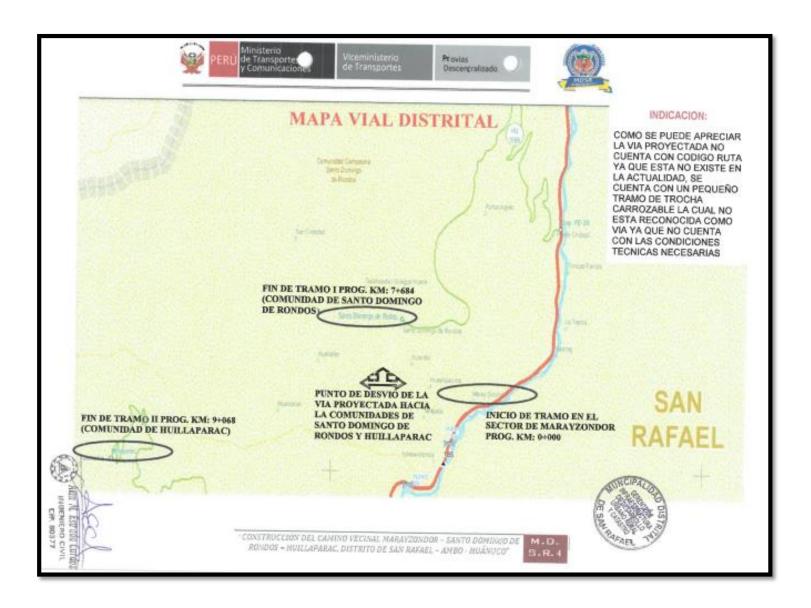
Con fische 32 de Petrero del 2021, mediante CARTA tir 99/2021/MOSI/LUBRYCHI; si Jefe de la Unidad de Legistica y Control patrinossal comunica al prosection adjudicado observaciones existentes en los documentes presentados, y notifico al CONSORCIO SUPERVISOR VIALES, subcanar requisitos para el perfeccionamiento del contrato, receivado al como Millovertacionológical con y otergándos un plaza máximo de 55 des habites tiguantes de recepiorado la motificación en mento a la establecido al Art. 341 del Regiamento de la Ley de Comentaciones del Estado.

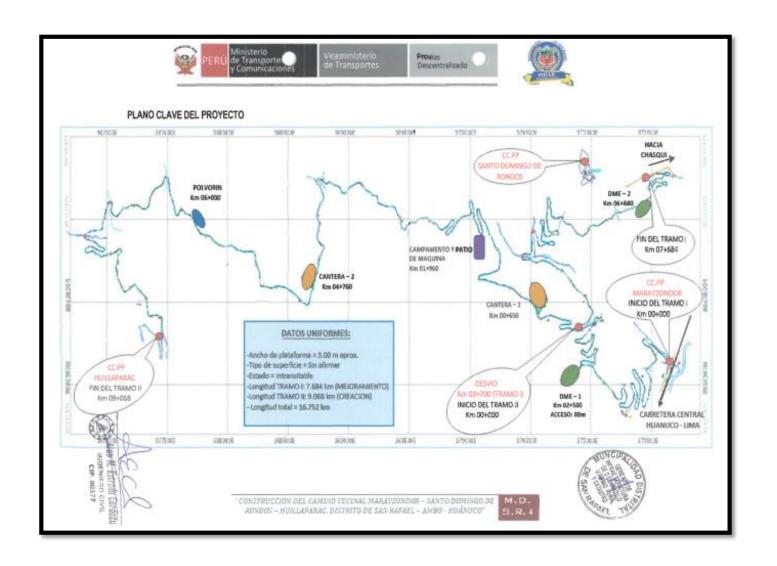
Con fecha 35 de Petrero del 2021, Pladiante CARTA M° 002-2021. "CCASCACIO SUPERVISION VIALES", subserno los requisitos para perfeccionar el contrato ante la finicidad, ingresando la certa amba mencionado por mesa de partes reciberte registro N° 368 y recepcionado en la Unidad de Logistica y Cantrol patrimonal con registro N° 302.

CLÁDISULA SEQUINDA: GELETO

Il presente contrata tiene por objeto Contratación de servicio de Consultoria de otine para la Supervisión de la Dora "Construcción del Commo Vednal Manacondor – Santo Domingo de Rondos - Hallaparac Distrito de San Rafled - Provincia de Aniba - Región Huánsco"

CLÁUSSILA TERCERA: MONTO CONTRACTUAL.


Di monto total del presente contrato accorde a S/ S66,358.40 (QUINIENTOS SESENTA Y SEIS MIS.
TRESCENTOS CINCUENTA Y OCHO CON 60/100 SOLES), que incluye tados los impuestos de Ley.



DESCRIPTION	MONTDAY
Septembelin de Ejecución de Ditria y Recepción de Obra	N: 900,000,00
Liquidación de abra y Liquidación de contrate de augenvisión	5 5.156.00
TOTAL	57 586 358 66

Este mento comprende el costo del servicio de consultoria de alus, tedes los tributos, segunos, transperte, inspecciones, pruebas y, de sor el caso, les costes laborates conforme a la legislación elgente, sel como cualquier otro concepto que puede tener incidencia sobre la ejecución del servicia de carsultoria de otra materia del

Place de Armas sin - San Ratbel - Aride - Hobraco

INSENIERO CIVIL

RESUMEN DE PRESUPUESTO

"CONSTRUCCION DEL CAMINO VECINAL MARAYZONDOR - SANTO DOMINGO DE RONDOS - HUILLAPARAC, DISTRITO DE SAN RAFAEL - PROVINCIA DE AMBO - REGION DE HUÁNUCO" Proyecto:

Ubicación : SAN RAFAEL-AMBO- HUANUCO
Cliente : MUNICIPALIDAD DISTRITAL DE SAN RAFAEL

: AGOSTO DEL 2021 Fecha

	DESCRIPCION	COSTO
001	CONSTRUCCION Y MEJORAMIENTO DE CAMINO VECINAL	7,201,071.27
	Costo Directo	7,201,071.27
	Gastos Generales (11.38% C.D.)	819,701.38
	Utilidad (7.00% C.D.)	504,074.99
	Sub Total	8,524,847.64
	Impuesto General a las Ventas 18.00 %	1,534,472.58
	PRESUPUESTO DE OBRA	10,059,320.22
	SUPERVISION (5.00% C.O.)	502,704.92
	GASTOS DE ELABORACION DE EXPEDIENTE TECN	ICO 147,399.50
	PRESUPUESTO TOTAL	10,709,424.64

SON: DIEZ MILLONES SETESCIENTOS NUEVE MIL CUATROSCIENTOS VEINTICUATRO CON 64/100 SOLES

3.4 MODALIDAD DE EJECUCION

La modalidad de ejecución será por CONTRATA y el sistema de contratación será por COSTOS UNITARIOS

ESTUDIO DE CLASIFICACIÓN VEHICULAR (CONTEO DE TRÁFICO)

TRAMO	MARAYZONDOR - SAN	NTO DOMINGO DE RONDOS - HUILLAPARAC	ESTACION	01
SENTIDO	MARAYZONDOR - SANTO DOMINGO DE RONDOS	MARAYZONDOR - SANTO DOMINGO DE RONDOS	CODIGO	E-01
UBICACIÓN		MARAYZONDOR	FECHA	11/08/2021

			TRANS	SPORTE LIGERO)	OTROS	VEHICULOS LIG	EROS	TRANSPOR	TE PESADO	TOTAL DE	% POR
HORA	SENTIDO	AUTO	STATION WAGON	CAMIONETA PICK UP	CMTA. RURAL COMBI	TRIMOVIL DE CARGA	TRIMOVIL DE PASAJEROS	MOTO- CICLETA	OMNIBUS 2 E	CAMION 2 E	VEHICULOS POR HORA	HORA DE VEHICULOS
04 A 05	ENTRADA	3		4						3	10	19.619
04 A 03	SALIDA										0	0.009
05 A 06	ENTRADA		3								3	
UD A UD	SALIDA	2										5.889
	ENTRADA										2	4.769
06 A 07	SALIDA	1	2	2					-	2	2	3.929
	ENTRADA	3		_							5	11.909
07 A 08	SALIDA	-								_	3	5.889
	ENTRADA	2		1						2	2	4.769
08 A 09	SALIDA	2	1					2	-		5	9.809
	ENTRADA	-	2	1		-		3		1	7	16.679
09 A 10	SALIDA	2	- 4	- 1		2		1			6	11.76%
	ENTRADA	1						1			3	7.14%
10 A 11	SALIDA	'	2								1	1.96%
	ENTRADA	1	- 2								2	4.76%
11 A 12	SALIDA									2	3	5.88%
Contract C	ENTRADA							2			2	4.76%
12 A 13	SALIDA	1									0	0.00%
	ENTRADA	2	-	1							2	4.76%
13 A 14	SALIDA	2									2	3.92%
	ENTRADA	1									2	4.76%
14 A 15	SALIDA	2						1		2	4	7.84%
	ENTRADA	2				1					3	7.14%
15 A 18	ENTRADA							2			UNC/A	3.92%

ESTUDIO DE CLASIFICACIÓN VEHICULAR (CONTEO DE TRÁFICO)

TRAMO	MARAYZONDOR - SANT	TO DOMINGO DE RONDOS - HUILLAPARAC	ESTACION	01	
SENTIDO	MARAYZONDOR - SANTO DOMINGO DE RONDOS	MARAYZONDOR - SANTO DOMINGO DE RONDOS	CODIGO	E - 01	
UBICACIÓN		MARAYZONDOR	FECHA	11/08/2021	

			TRANS	SPORTE LIGERO		OTROS	VEHICULOS LIG	EROS	TRANSPOR	TE PESADO	TOTAL DE	% POR
HORA	SENTIDO	AUTO	STATION WAGON	CAMIONETA PICK UP	CMTA. RURAL COMBI	TRIMOVIL DE CARGA	TRIMOVIL DE PASAJEROS	MOTO- CICLETA	OMNIBUS 2 E	CAMION 2 E	VEHICULOS POR HORA	HORA DE VEHICULOS
107110	SALIDA									1	1	2.38%
16 A 17	ENTRADA	2	3								5	9.80%
10 A 17	SALIDA							1		1	2	4.76%
17 A 18	ENTRADA							2			2	3.92%
17 A 10	SALIDA	2	2								4	9.52%
18 A 19	ENTRADA	1									1	1.96%
10 M 13	SALIDA	1	1					1			3	7.14%
19 A 20	ENTRADA										0	0.00%
18 M 20	SALIDA										0	0.00%
20 A 21	ENTRADA	2									2	3.92%
20 M Z I	SALIDA	2									2	4.76%
TOTAL	ENTRADA	18	8	6	0	2	0	8	0	9	51	54.84%
TOTAL	SALIDA	17	8	3	0	1	0	8	0	5	42	45.16%
	Total	35	16	9	0	3	0	16	0	14	93	100.00%
% TOTAL		37.63%	17.20%	9.68%	0.00%	3.23%	0.00%	17.20%	0.00%	15.05%	100.00%	100.0076

ESTUDIO DE CLASIFICACIÓN VEHICULAR (CONTEO DE TRÁFICO)

TRAMO	MARAYZONDOR - SANTO	D DOMINGO DE RONDOS - HUILLAPARAC	ESTACION	01
	MARAYZONDOR - SANTO DOMINGO DE RONDOS	MARAYZONDOR - SANTO DOMINGO DE RONDOS	CODIGO	E-01
UBICACIÓN		MARAYZONDOR	FECHA	12/08/2021

			TRANS	SPORTE LIGERO	N.	OTROS	VEHICULOS LIG	EROS	TRANSPOR	TE PESADO	TOTAL DE	% POR
HORA	SENTIDO	AUTO	STATION WAGON	CAMIONETA PICK UP	CMTA. RURAL COMBI	TRIMOVIL DE CARGA	TRIMOVIL DE PASAJEROS	MOTO- CICLETA	OMNIBUS 2 E	CAMION 2 E	VEHICULOS POR HORA	HORA DE VEHICULOS
04 A 05	ENTRADA	3	3				1			3	10	21.74
20000	SALIDA						1			-	0	0.009
05 A 06	ENTRADA									1	1	2.179
997199	SALIDA		2							2	4	
06 A 07	ENTRADA		1	2						- 4	3	16.679
00 M 01	SALIDA	2		1						1	4	6.529
07 A 08	ENTRADA	2								- 29	2	16.679
07 A 08	SALIDA			1							2	4.35%
00 4 00	ENTRADA	1				2				-	1	4.179
08 A 09	SALIDA	2		2		•		1		2	5 7	10.879
00 1 10	ENTRADA	2	2	3				1.		2		29.17%
09 A 10	SALIDA		-								7	15.22%
28.5.44	ENTRADA										0	0.00%
10 A 11	SALIDA	1								-	0	0.009
** * * * *	ENTRADA	-				_				1	2	8.33%
11 A 12	SALIDA										0	0.00%
	ENTRADA	1						-	_		0	0.00%
12 A 13	SALIDA							1			2	4.35%
	ENTRADA	3					1				1	4.17%
13 A 14	SALIDA	•									3	6.52%
U816.00	ENTRADA							-			0	0.00%
14 A 15	SALIDA	1						1			1	2.17%
GENERAL	ENTRADA										1	4.17%
15 A 16	SALIDA			1		1					0	0.00%
	OFFIDM.					1					2	8.33%

ESTUDIO DE CLASIFICACIÓN VEHICULAR (CONTEO DE TRÁFICO)

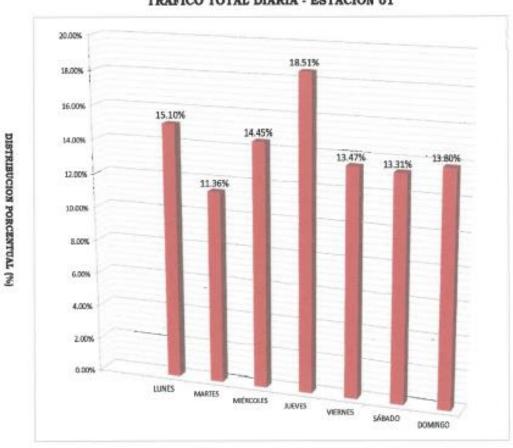
TRAMO	MARAYZONDOR - SANT	O DOMINGO DE RONDOS - HUILLAPARAC	ESTACION	01
SENTIDO	MARAYZONDOR - SANTO DOMINGO DE RONDOS	MARAYZONDOR - SANTO DOMINGO DE RONDOS	CODIGO	E-01
UBICACIÓN		MARAYZONDOR	FECHA	12/08/2021

	CONTROL OF THE		TRANS	SPORTE LIGERO		OTROS	VEHICULOS LIGI	EROS	TRANSPOR	TE PESADO	TOTAL DE	% POR
HORA	SENTIDO	AUTO	STATION WAGON	CAMIONETA PICK UP	CMTA, RURAL COMBI	TRIMOVIL DE CARGA	TRIMOVIL DE PASAJEROS	MOTO- CICLETA	OMNIBUS 2 E	CAMION 2 E	VEHICULOS POR HORA	HORA DE VEHICULOS
16 A 17	ENTRADA		2	1	1000000						3	6.529
	SALIDA										0	0.009
17 A 18	ENTRADA							2		2	4	8.705
11 14 19	SALIDA										0	0.009
18 A 19	ENTRADA	2					1	2			5	10.879
107.19	SALIDA	-	2								2	8.339
19 A 20	ENTRADA										0	0.009
19 M 20	SALIDA									_	0	0.009
20 A 21	ENTRADA							_			0	
20 A 21	SALIDA											0.009
TOTAL	ENTRADA	14	8	- 6	0	2	2	6	0	0	0	0.00%
TOTAL	SALIDA	6	4	5	0	1	4	- 0	0	0	46	65.719
	Total	20	12	11			-	- 1	0	6	24	34.29%
% TOTAL	ruge	-			0	3	3	7	0	14	70	100.00%
76 TUTAL		28.57%	17.14%	15.71%	0.00%	4.29%	4.29%	10.00%	0.00%	20.00%	100.00%	

DESGLOSE DEL TRAFICO TOTAL POR DIA (VARIACION DIARIA)

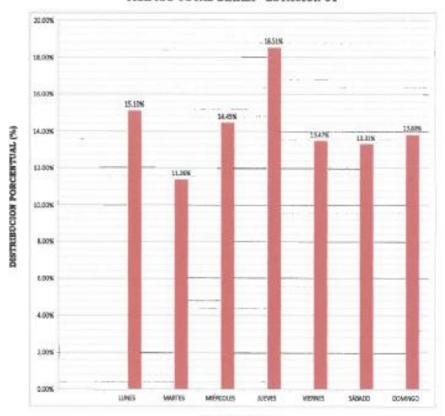
TRAMO	MARAYZONDOR - SANTO DOMINGO DE RONDOS	ESTACION	01
UBICACIÓN	MARAYZONDOR (KM 00+000)	C00i30	E-01

34,11.1	The same				OTROS	VEHICULOS LIG	ERO\$	TRANSPOR	TE PESADO	TOTAL DE		1
DIA	AUTO	WAGON	CMTA, PICK	(COMBI)	TRIMOVIL DE CARGA	TRIMOVIL DE PASAJEROS	MOTO- CICLETA	OMNIBUS	CAMION 2E	VEHICULOS POR DIA	PROMEDIO	%
110000	18	8	6	0	2	0	8	0	9	51	47	15,10
LUNES	17	a	3	0	1	0	8	0	5	42	70	146.15
MANAGER	14	8	6	0	2	2	- 8	0	8	46	35	11.38
MARTES	6	4	5	0	1	1	1	0	6	24	327	111,40
MIÉRCOLES	12	11	2	0	3	3	12	0	5	48	45	14.45
MIENGULES	- 6	8	2	0	4	2	12	0	7	41	707	1 3596
JUEVES	17.	7	3	0	1	8	18	0	7	61	- 57	18.51
JUEVES	13	9	2	0	1	4	20	0	4	53		
VIERNES	- 11	9	2	0	2	2	- 3	0	10	39	42	13.4
VIEHVES	12	9	2	0	1	1	10	0	9	64	96	13.47
SÁBADO	10	8	3	0	3	3	5	0	8	40	41	13.3
SABADO	- 8	8	3.	0	3	2	11	9	7	42	31	10.0
DOMINGO	7	7	2	0	1	3	14	.0.	7	46	43	13.80
DOWNVGO	10	7	2	0	1	3	9	0	7	39	-20	10.0
PARCIAL	89	58	24	0	14	21	56	0	54	331	308	100
PANGUAL	72	53	19	0	12	13	71	0	45	285	340	100
TOTAL	161	111	43	0	26	34	137	0	99	616	308	100



DIAS DE LA SEMANA	DISTRIBUCION PORCESTUAL (%)
LUNES	15.10%
MARTES	11.36%
MIÉRCOLES	14.45%
JUEVES	18.51%
VIERNES	13.47%
SÁBADO	13.31%
DOMINGO	13.60%
	100.00%

TRAFICO TOTAL DIARIA - ESTACION 01



DIAS DE LA SEMANA

DUA DE LA REBUXA	DISCRIBINGIOS NOSCESARAT (AN
TOMES	15.10%
MARTES	11.36%
MUÉRCOLOS	14.45%
JUEVES	18.5196
VIERNES	13.47%
SÁDADO	13:31%
DOMINGO .	13.80%

TRAFICO TOTAL DIARIA - ESTACION 01

DIAS DE LA SEMANA